Loading...
Search for: energy-inputs
0.009 seconds

    Effects of amount and mode of input energy on the performance of a multi-stage solar still: An experimental study

    , Article Desalination ; Volume 375 , 2015 , Pages 108-115 ; 00119164 (ISSN) Feilizadeh, M ; Karimi Estahbanati, M. R ; Ardekani, A. S ; Zakeri, S. M. E ; Jafarpur, K ; Sharif University of Technology
    Elsevier  2015
    Abstract
    Effects of the amount and mode of input energy to an active multi-stage solar still were investigated in this work. To control the input energy, an electrical heater controlled by a PLC was utilized to simulate the energy absorbed by solar collectors. The study of the amount of input energy indicated that the freshwater production was a quadratic function of the collector over basin area (CBA) ratio. It was also found that stages 1 to 4 produced about 36%, 26%, 20% and 18% of the overall yield, respectively. Moreover, the effect of employing a thermal energy storage (TES) on the system performance was studied by comparing the mode of feeding energy according to the daily solar radiation... 

    Quantum capacity of a bosonic dephasing channel

    , Article Physical Review A ; Volume 102, Issue 4 , 2020 Arqand, A ; Memarzadeh, L ; Mancini, S ; Sharif University of Technology
    American Physical Society  2020
    Abstract
    We study the quantum capacity of a continuous-variable dephasing channel, which is a notable example of a non-Gaussian quantum channel. We prove that a single-letter formula applies. The optimal input state is found to be diagonal in the Fock basis and with a distribution that is a discrete version of a Gaussian. We discuss how its mean and variance are related to the dephasing rate and input energy. We then show that by increasing the input energy, the capacity saturates to a finite value. We also show that it decays exponentially for large values of dephasing rates. © 2020 American Physical Society  

    Direct laser sintering of metal powders: Mechanism, kinetics and microstructural features

    , Article Materials Science and Engineering A ; Volume 428, Issue 1-2 , 2006 , Pages 148-158 ; 09215093 (ISSN) Simchi, A ; Sharif University of Technology
    2006
    Abstract
    In the present work, the densification and microstructural evolution during direct laser sintering of metal powders were studied. Various ferrous powders including Fe, Fe-C, Fe-Cu, Fe-C-Cu-P, 316L stainless steel, and M2 high-speed steel were used. The empirical sintering rate data was related to the energy input of the laser beam according to the first order kinetics equation to establish a simple sintering model. The equation calculates the densification of metal powders during direct laser sintering process as a function of operating parameters including laser power, scan rate, layer thickness and scan line spacing. It was found that when melting/solidification approach is the mechanism... 

    Dispersed phase holdup in a pulsed disc and doughnut extraction column

    , Article Brazilian Journal of Chemical Engineering ; Volume 28, Issue 2 , June , 2011 , Pages 313-323 ; 01046632 (ISSN) Torab Mostaedi, M ; Jalilvand, H ; Outokesh, M ; Sharif University of Technology
    2011
    Abstract
    Dispersed phase holdup has been measured in a 76 mm diameter pulsed disc and doughnut extraction column for three different liquid-liquid systems. The effects of operational variables such as pulsation intensity and dispersed and continuous phase flow rates on holdup have been investigated and found to be significant. The existence of three different operational regimes, namely mixer-settler, dispersion, and emulsion regimes, was observed when the energy input was changed. The results indicated that the characteristic velocity approach is applicable to this type of extraction column for analysis of holdup in the transition and emulsion regions. Empirical correlations are derived for... 

    The influence of tool geometry on the thermo-mechanical and microstructural behaviour in friction stir welding of AA5086

    , Article Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science ; Volume 225, Issue 1 , 2011 , Pages 1-16 ; 09544062 (ISSN) Jamshidi Aval, H ; Serajzadeh, S ; Kokabi, A. H ; Sharif University of Technology
    2011
    Abstract
    In this work, the effect of tool geometric parameters on thermo-mechanical behaviour in friction stir welding of AA5086 has been investigated. For doing so, the thermo-mechanical responses of material during welding with different tools have been predicted by a three-dimensional finite-element model using the finite-element code ABAQUS. In addition, welding experiments have been carried out to study the developed microstructures and the mechanical properties of welded alloy. The results show that tool geometry significantly affects the energy input, deformation pattern, plunge force, microstructures, and mechanical properties of the joint. The conical tool with the shoulder angle of 2° has... 

    Spindle speed variation and adaptive force regulation to suppress regenerative chatter in the turning process

    , Article Journal of Manufacturing Processes ; Volume 12, Issue 2 , August , 2010 , Pages 106-115 ; 15266125 (ISSN) Haji Hajikolaei, K ; Moradi, H ; Vossoughi, G ; Movahhedy, M. R ; Sharif University of Technology
    2010
    Abstract
    Chatter suppression in machining processes results in more material removal rate, high precision and surface quality. In this paper, two control strategies are developed to suppress chatter vibration in the turning process including a worn tool. In the first stage, a sinusoidal spindle speed variation around the mean speed is modulated to disturb the regenerative mechanism. The optimal amplitudes of the speed modulations are found based on a genetic algorithm such that the input energy to the turning process is minimized. In the second stage, to improve the response of the system which is associated with small ripples under the steady state condition, an adaptive controller is designed. In...