Loading...
Search for: engine-cylinders
0.005 seconds

    Investigating various effects of reformer gas enrichment on a natural gas-fueled HCCI combustion engine

    , Article International Journal of Hydrogen Energy ; Vol. 39, issue. 34 , November , 2014 , p. 19799-19809 Voshtani, S ; Reyhanian, M ; Ehteram, M ; Hosseini, V ; Sharif University of Technology
    Abstract
    Homogenous charge compression ignition (HCCI) combustion has the potential to work with high thermal efficiency, low fuel consumption, and extremely low NOx-PM emissions. In this study, zero-dimensional single-zone and quasi-dimensional multi-zone detailed chemical kinetics models were developed to predict and control an HCCI combustion engine fueled with a natural gas and reformer gas (RG) blend. The model was validated through experiments performed with a modified single-cylinder CFR engine. Both models were able to acceptably predict combustion initiation. The result shows that the chemical and thermodynamic effects of RG blending advance the start of combustion (SOC), whereas dilution... 

    Experimental and numerical study of the effect of pulsating flow on the turbocharger turbine performance parameters

    , Article SAE Technical Papers ; Volume 2 , April , 2013 Tabatabaei, H ; Boroomand, M ; Taeibi Rahni, M ; Sharif University of Technology
    2013
    Abstract
    The pulsating flow in the exhaust gas of a SI engine causes an unsteady flow at the inlet to the turbocharger turbine. In a four cylinder four stroke engine, the pulse frequency varies between 20 and 200 Hz. Three dimensional pulsating flows in a vane-less turbocharger turbine of a 1.7 liters SI engine are simulated numerically and validated experimentally. Simulations are done for 720 degree engine cycle at three engine speeds. The results are shown the inlet pulsating flow has significant effects on several turbine parameters especially the inlet total pressure, the reduced mass flow rate and the efficiency. The results show a very good agreement between the three-dimensional unsteady... 

    Accurate calculation of the natural frequencies of reticulated and solid cylindrical composite shells

    , Article Applied Mechanics and Materials, 29 July 2011 through 31 July 2011, Bangkok ; Volume 110-116 , July , 2012 , Pages 4598-4606 ; 16609336 (ISSN) ; 9783037852620 (ISBN) Hashemian, A. H ; Kargarnovin, M. H ; Jam, J. E ; Sharif University of Technology
    2012
    Abstract
    There are hundreds models of reticulated structures including the squared reticulated cylindrical shells. It is considered as comprising of a number of circumferential and longitudinal rods. Analytical governing equation for natural frequencies has been derived for this type of structures and to verify the validity of solutions, Finite Element Method (FEM) is used. The comparison of results demonstrate close agreement between analytical and FE solutions. Also a comparison is preformed between a reticulated and equivalent solid hollow cylinder shell. The equivalent solid hollow cylinder has equal weight, length and outer diameter with the squared reticulated cylindrical shell. This comparison... 

    Modeling of pressure line behavior of a common rail diesel engine due to injection and fuel variation

    , Article Journal of the Brazilian Society of Mechanical Sciences and Engineering ; Volume 39, Issue 3 , 2017 , Pages 661-669 ; 16785878 (ISSN) Mohebbi, M ; Aziz, A. A ; Hamidi, A ; Hajialimohammadi, A ; Hosseini, V ; Sharif University of Technology
    Springer Verlag  2017
    Abstract
    Common rail diesel engines with electronic fuel injection can accurately meter the fuel injection quantity with more accurate fuel injection control capability. In this work a common rail fuel injection system of a single cylinder diesel engine has been proposed and the important parameters like injection pressure, energizing time and high pressure pipes diameter and length are designed such that to be compatible with the engine basic design in case of pressure waves and injected mass variations. A one-dimensional approach has been used to model the injector using AMESim code in which Adiabatic models have been used to model injector system. Injected mass quantity has been calculated for... 

    An investigation on the effects of gas pressure drop in heat exchangers on dynamics of a free piston stirling engine

    , Article International Journal of Engineering, Transactions B: Applications ; Volume 30, Issue 2 , 2017 , Pages 1243-1252 ; 1728144X (ISSN) Zare, S ; Tavakolpour Saleh, A. R ; Aghajanzadeh, O ; Sharif University of Technology
    Materials and Energy Research Center  2017
    Abstract
    This paper is devoted to study the effects of pressure drop in heat exchangers on the dynamics of a free piston Stirling engine. First, the dynamic equations governing the pistons as well as the gas pressure equations for hot and cold spaces of the engine are extracted. Then, by substituting the obtained pressure equations into the dynamic relationships the final nonlinear dynamic equations governing the free piston Stirling engine are acquired. Next, effects of the gas pressure drop in heat exchangers on maximum strokes of the pistons and their velocities and accelerations are investigated. Furthermore, influences of pressure drop increase in the heat exchangers on maximum and minimum gas... 

    Heat treatment effect on thermo-mechanical fatigue and low cycle fatigue behaviors of A356.0 aluminum alloy

    , Article Materials and Design ; Volume 45 , 2013 , Pages 279-285 ; 02613069 (ISSN) Azadi, M ; Shirazabad, M. M ; Sharif University of Technology
    2013
    Abstract
    In the present paper, the heat treatment effect on A356.0, a cast aluminum alloy which has been widely used in diesel engine cylinder heads, is investigated under out-of-phase thermo-mechanical fatigue and low cycle fatigue (at different temperatures) loadings. A typical heat treatment is applied to the material including 8. h solution at 535 °C, water quench and 3. h ageing at 180 °C. The experimental fatigue results show that the heat treatment process has considerable influence on mechanical and low cycle fatigue behaviors, especially at room temperature, but its effect on thermo-mechanical fatigue lifetime is not significant. The improvement in the strength can be explained by the... 

    Comparison between isothermal and non-isothermal fatigue behavior in a cast aluminum-silicon-magnesium alloy

    , Article Strength of Materials ; Volume 47, Issue 6 , November , 2015 , Pages 840-848 ; 00392316 (ISSN) Azadi, M ; Winter, G ; Farrahi, G. H ; Sharif University of Technology
    Springer New York LLC  2015
    Abstract
    In the present study, the out-of-phase thermomechanical fatigue (OP-TMF) behavior of a cast aluminum-silicon-magnesium alloy, the A356.0 alloy which has been widely used in diesel engine cylinder heads, is compared to room-temperature and high-temperature low cycle fatigue (RT-, HT-LCF) behaviors. For this purpose, strain/temperature-controlled isothermal and non-isothermal fatigue tests were performed based on realistic loading conditions in cylinder heads. Fatigue tests results showed that the plastic strain increased during cycles under constant mechanical strain amplitude, while the specimen failed. Under LCF loadings, the cyclic hardening occurred at low temperatures for the A356.0... 

    Investigation of the relationship between engine valve leakage and acoustic emission measured on the cylinder head ignoring combustion effects

    , Article Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering ; Volume 230, Issue 1 , 2016 , Pages 3-9 ; 09544089 (ISSN) Jafari, S. M ; Mehdigholi, H ; Behzad, M ; Sharif University of Technology
    SAGE Publications Ltd 
    Abstract
    Finding leakage in valves is important to troubleshoot performance of internal combustion engines. Leakage can lead to a reduction in engine power and an increase in emissions. The main objective of the present study is to investigate relationship between valve leakage and the acoustic emission generated from the steady flow in the cylinder head of the internal combustion engine. The test rig is the cylinder head for a spark-ignited engine. The test rig simulates the valve leakage due to valve clearance. The valve clearance fault was artificially simulated by a very small lift in valve. The acoustic emission method was used to measure acoustic emission signals generated by valve flow.... 

    Optimal energy management strategy of a hybrid electric vehicle considering engine noise

    , Article JVC/Journal of Vibration and Control ; Volume 24, Issue 23 , 2018 , Pages 5546-5555 ; 10775463 (ISSN) Aliramezani, M ; Khademnahvi, M ; Delkhosh, M ; Sharif University of Technology
    SAGE Publications Inc  2018
    Abstract
    Noise emission from vehicles in urban transportation has become of interest for researchers in addition to the engine exhaust gas emissions due to its significant effect on public health. In this work, an optimal energy management strategy is proposed for a hybrid electric vehicle (HEV) by taking the effect of engine noise into account. The engine noise is calculated based on a pressure-based combustion noise model at different operating points of a 1.5 L gasoline engine. The optimal operating points of the engine are defined using the calculated engine noise from in-cylinder pressure data and experimental data of brake specific fuel consumption (FC). A modification on the electric assist... 

    Availability analysis on combustion of n-heptane and isooctane blends in a reactivity controlled compression ignition engine

    , Article Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering ; Volume 232, Issue 11 , 2018 , Pages 1501-1515 ; 09544070 (ISSN) Mohebbi, M ; Reyhanian, M ; Ghofrani, I ; Aziz, A. A ; Hosseini, V ; Sharif University of Technology
    SAGE Publications Ltd  2018
    Abstract
    Unfortunately, energy demands and destruction of the environment from uncontrolled manipulation of fossil fuels have increased. Climate change concerns have resulted in the rapid use of new, alternative combustion technologies. In this study, reactivity controlled compression ignition (RCCI) combustion, which can simply be exploited in internal combustion (IC) engines, is investigated. To introduce and identify extra insightful information, an exergy-based study was conducted to classify various irreversibility and loss sources. Multidimensional models were combined with the primary kinetics mechanism to investigate RCCI combustion, incorporating the second law of thermodynamics. The... 

    Investigating the effect of engine noise on power management strategy of a hybrid electric vehicle

    , Article Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering ; Volume 232, Issue 10 , 2018 , Pages 1287-1296 ; 09544070 (ISSN) Delkhosh, M ; Aliramezani, M ; Khadem Nahvi, M ; Sharif University of Technology
    SAGE Publications Ltd  2018
    Abstract
    Hybrid electric vehicles (HEVs) have been developed as a promising way to decrease the fuel consumption and emissions of conventional vehicles. Although the noise emission of HEVs is generally lower than that of conventional vehicles, it is still an issue, especially in urban transportation. In this paper, a power management strategy is developed to minimize the annoying noise of the engine for an HEV. This is a modified version of the strategy that was originally established based on the speed ratio of continuously variable transmission (CVT) as the control parameter (CVT-based strategy). The engine combustion noise is assessed using the experimental data of the in-cylinder pressure. Also,... 

    Various effects of reformer gas enrichment on natural-gas, iso-octane and normal-heptane HCCI combustion using artificial inert species method

    , Article Energy Conversion and Management ; Volume 159 , March , 2018 , Pages 7-19 ; 01968904 (ISSN) Reyhanian, M ; Hosseini, V ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    Reformer gas (syngas) addition to main fuel is a practical solution for combustion timing control in HCCI engines. This study emphasizes the understanding of various effects of reformer gas (RG) addition, with composition of 75%vol H2 and 25%vol CO, in HCCI combustion by developing an artificial inert species method and using a detailed chemical kinetics multi-zone model. Three fuels (iso-octane, n-heptane, and natural gas) with different autoignition characteristics were used in this study. The developed multi-zone model was validated for mentioned fuels at various percentages of RG using six experimental cases of a single-cylinder CFR engine. The results showed that increasing reformer gas... 

    An experimental study on low temperature combustion in a light duty engine fueled with diesel/CNG and biodiesel/CNG

    , Article Fuel ; Volume 262 , 2020 Ghaffarzadeh, S ; Nassiri Toosi, A ; Hosseini, V ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Low temperature combustion potentially can improve engine efficiency coupled with the benefits of low nitrogen oxides, and particulate matter emissions, and vice versa high unburned hydrocarbon and carbon oxide emissions through in-cylinder fuel reactions. In this survey, the experiments were carried out using a modified one-cylinder reactivity controlled compression ignition engine, dual-fueled diesel/compressed natural gas and biodiesel/CNG, to investigate the effects of direct injection strategies on the engine combustion efficiency and emission characteristics. Different ratios of biodiesel blends at different premixed ratios were applied to the dual-fuel engine. The results showed that... 

    Numerical simulation of thermal barrier coating system under thermo-mechanical loadings

    , Article Proceedings of the World Congress on Engineering 2011, WCE 2011, 6 July 2011 through 8 July 2011 ; Volume 3 , July , 2011 , Pages 1959-1964 ; 9789881925152 (ISBN) Moridi, A ; Azadi, M ; Farrahi, G. H ; Sharif University of Technology
    2011
    Abstract
    In the present paper, numerical simulation of thermal barrier coating system under thermo-mechanical loadings is performed, using the finite element method in ABAQUS software. The base material is Aluminum-silicon alloy, A356.0 which is widely used in automotive components such as diesel engine cylinder heads. Thermal barrier coatings (TBCs) are applied to combustion chamber in order to reduce fuel consumption and pollutions and also improve fatigue life of components. The roughness effect of coating layers on stress distribution of test specimens is investigated. Semi-ellipsoid roughness of the interfaces between substrate/bond coat and bond coat/top coat are simulated to get the stress... 

    Effects of temperature on wear behavior of a plasma sprayed diesel engine cylinder

    , Article SAE Technical Papers ; 2012 Ghorashi, M. S ; Farrahi, G. H ; Eftekhari, M. R ; Sharif University of Technology
    SAE  2012
    Abstract
    One of the main subjects in automotive industries is to enhance the efficiency of internal combustion engines. Wear between cylinder and ring is one of the major parameters reducing the engine performance. So many parameters are affecting the wear losses. Temperature plays a key role on the severity of wear condition in internal combustion engines. In conventional cast iron cylinders, it is not possible to increase the temperature from a defined level, as it causes excessive wear in contact area between cylinder liner and piston ring. One of the major benefits of using ceramic coating is their ability to withstand in higher temperatures, while having adequate hardness to improve wear rate... 

    Coating thickness and roughness effect on stress distribution of A356.0 under thermo-mechanical loadings

    , Article Procedia Engineering, 5 June 2011 through 9 June 2011 ; Volume 10 , June , 2011 , Pages 1372-1377 ; 18777058 (ISSN) Moridi, A ; Azadi, M ; Farrahi, G. H ; Sharif University of Technology
    2011
    Abstract
    Cast aluminium-silicon alloy, A356.0, is widely used in automotive components such as diesel engine cylinder heads and also in aerospace industries because of its outstanding mechanical, physical, and casting properties. Thermal barrier coatings are applied to combustion chamber in order to reduce fuel consumption and pollutions and also improve fatigue life of components. However, studies on behaviour of A356.0 with thermal barrier coating are still rare. The purpose of the present work is to simulate stress distribution of A356.0 under thermo-mechanical cyclic loadings, using a two-layer elastic-visco-plastic model of ABAQUS software. The results of stress-strain hysteresis loop are...