Loading...
Search for: enhanced-oil-recovery--eor
0.011 seconds

    A Simulation study of CO2 flooding for EOR and sequestration in bottom water-driven reservoir

    , Article Environmental Engineering and Management Journal ; Volume 11, Issue 4 , April , 2012 , Pages 747-752 ; 15829596 (ISSN) Ghoodjani, E ; Bolouri, S. H ; Sharif University of Technology
    2012
    Abstract
    CO2 flooding has been recognized widely as one of the most effective enhanced oil recovery (EOR) technologies for reducing greenhouse emissions while increasing the ultimate recovery of oil reservoirs. Because of the wide variety of parameters that can influence, the outcome of CO2 storage projects reservoir simulation has gained wide popularity. In this study, a fully compositional reservoir simulation model was used to simulate various operational conditions, reservoir properties and fluid composition, and their effects on the amount of CO2 stored and oil recovered. The results can be used for selection of best reservoir candidates for carbon storage and optimization of operational... 

    The role of CO2 and ion type in the dynamic interfacial tension of acidic crude oil/carbonated brine

    , Article Petroleum Science ; Volume 16, Issue 4 , 2019 , Pages 850-858 ; 16725107 (ISSN) Lashkarbolooki, M ; Zeinolabedini Hezave, A ; Ayatollahi, S ; Sharif University of Technology
    China University of Petroleum Beijing  2019
    Abstract
    The effects of CO2 and salt type on the interfacial tension (IFT) between crude oil and carbonated brine (CB) have not been fully understood. This study focuses on measuring the dynamic IFT between acidic crude oil with a total acid number of 1.5 mg KOH/g and fully CO2-saturated aqueous solutions consisting of 15,000 ppm of KCl, NaCl, CaCl2 and MgCl2 at 30 °C and a wide range of pressures (500–4000 psi). The results of IFT measurements showed that solvation of CO2 into all the studied aqueous solutions led to an increase in IFT of acidic crude oil (i.e., comparison of IFT of crude oil/CB and crude oil/brine), while no significant effect was observed for pressure. In contrast, the obtained... 

    Determination of minimum miscibility pressure in N2–crude oil system: A robust compositional model

    , Article Fuel ; Volume 182 , 2016 , Pages 402-410 ; 00162361 (ISSN) Hemmati Sarapardeh, A ; Mohagheghian, E ; Fathinasab, M ; Mohammadi, A. H ; Sharif University of Technology
    Elsevier Ltd 
    Abstract
    Nitrogen has been valued as an economical alternative injection gas for gas-based enhanced oil recovery (EOR) processes. Minimum miscibility pressure (MMP) is the most important parameter to successfully design N2 flooding. In this communication, a data bank covering wide ranges of thermodynamic and compositional conditions was gathered from open literature. Afterward, a rigorous approach, namely least square support vector machine (LSSVM) optimized with coupled simulated annealing (CSA) was proposed to develop a reliable and robust model for the prediction of MMP of pure/impure N2–crude oil. The results of this study showed that the proposed model is more reliable and accurate than the... 

    Experimental analysis of secondary gas injection strategies

    , Article Petroleum Science and Technology ; Volume 31, Issue 8 , 2013 , Pages 797-802 ; 10916466 (ISSN) Heidari, P ; Alizadeh, N ; Kharrat, R ; Ghazanfari, M. H ; Laki, A. S ; Sharif University of Technology
    2013
    Abstract
    CO2 injection is a potentially viable method of enhanced oil recovery for medium oil reservoirs. The authors compare the effect of gas injection strategy (simultaneous water-alternating gas [SWAG], water-alternating gas [WAG], and continuous gas injection [CGI]) on recovery in immiscible, near-miscible, and miscible modes of injection. It has been proved that CGI is not the most efficient injection scenario in oil-wet reservoirs. Miscible and near-miscible core flood tests demonstrated high oil recoveries in all injection strategies due to high capillary numbers achieved as a result of miscibility. The fluid mechanics of floods were discussed using pressure drop data, different mechanics was... 

    Low salinity injection into asphaltenic-carbonate oil reservoir, mechanistical study

    , Article Journal of Molecular Liquids ; Volume 216 , 2016 , Pages 377-386 ; 01677322 (ISSN) Lashkarbolooki, M ; Riazi, M ; Hajibagheri, F ; Ayatollahi, S ; Sharif University of Technology
    Abstract
    The impacts of salinity adjustment of displacing fluid have recently gained special attention to enhanced oil recovery (EOR). Different mechanisms have been studied widely in the literature while some of them are still subjugated to more scrutiny. The effects of diluted sea water on the interfacial properties of brine and asphaltenic-acidic crude oil and the wettability alteration of carbonate reservoir rock are investigated in this experimental observational work. The measurements of interfacial tension (IFT) and contact angle (CA) as two main parameters are studied. Besides, the effects of asphaltene and resin in the crude oil on the IFT values between the crude oil and aqueous solution... 

    Swelling behavior of heavy crude oil during injection of carbonated brine containing chloride anion

    , Article Journal of Molecular Liquids ; Volume 276 , 2019 , Pages 7-14 ; 01677322 (ISSN) Lashkarbolooki, M ; Zeinolabedini Hezave, A ; Ayatollahi, S ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    Carbonated brine (CB) injection, known as one of the effective enhanced oil recovery processes, is highly dependent on the reservoir conditions (i.e. temperature and pressure) as well as the type of dissolved salt in aqueous solution. This study is aimed to investigate the influential parameters on the swelling of crude oil as the most important mechanism during CB injection. The swelling of crude oil in the presence of different CB solutions consisted of different salts such as KCl, NaCl, CaCl2 and MgCl2 with constant concentration of 15,000 ppm is studied using a high-pressure, high-temperature visual cell which measures the volume of drop using image processing software based on... 

    Modeling and Economic Assessment of CO2 Capture by Oxy-fuel Combustion in Power Plants

    , M.Sc. Thesis Sharif University of Technology Khorshidi, Zakiyeh (Author) ; Soltanieh, Mohammad (Supervisor)
    Abstract
    Considering the drastical increase of greenhouse gases in the atmosphere, especially carbon dioxide, reduction of these gases seems necessary to combat global warming. Fossil fuel power plants are one of the main sources of CO2 emission. In this paper, CO2 capture from a natural gas fired steam cycle power plant using oxy-fuel combustion technology is studied. The Integrated Environmental Control Model (IECM) developed by Carnegie Mellon University was used to evaluate the effect of this capture technology on the plant efficiency and economic parameters of the system. Since the oxygen production plant, CO2 capture and transport are cost and energy intensive, the cost of electricity generated... 

    A comparison of WAG and SWAG processes: Laboratory and simulation studies

    , Article Energy Sources, Part A: Recovery, Utilization and Environmental Effects ; Volume 35, Issue 23 , 2013 , Pages 2225-2232 ; 15567036 (ISSN) Heidari, P ; Kharrat, R ; Alizadeh, N ; Ghazanfari, M. H ; Sharif University of Technology
    2013
    Abstract
    The use of water-alternating-gas injection can potentially lead to improved oil recovery from the fields; simultaneous water and gas injection is a form of water-alternating-gas injection. However, there is still an incomplete understanding of these processes and the need for comparative work is inevitable. Core flood experiments and compositional simulations of water-alternating-gas and simultaneous water and gas processes are presented. Immiscible, near miscible, and miscible modes of injection are covered. Matching process is done and optimization of design parameters (injection rate, slug size, water-alternating-gas ratio, and injection gas) is performed. Experimental data demonstrate... 

    Investigation of gas injection flooding performance as enhanced oil recovery method

    , Article Journal of Natural Gas Science and Engineering ; Volume 29 , 2016 , Pages 37-45 ; 18755100 (ISSN) Bayat, M ; Lashkar Bolooki, M ; ZeinolabediniHezave, A ; Ayatollahi, S ; Sharif University of Technology
    Elsevier 
    Abstract
    Asphaltene precipitation and deposition within the reservoir formation is one of the main concerns during enhanced oil recovery (EOR) processes especially during the gas injection. In the current study, different aspects of carbon dioxide (CO2) and nitrogen (N2) injection in the reservoir, was thoroughly examined. The feasibility of using these gases as the injection gas was explored using Bayesian network-based screening method. After recombination and preparation of the live crude oil, precipitation of asphaltene using vanishing interfacial tension (VIT) method and core flooding experimentation was examined. Besides, swelling test was utilized to investigate the effect of CO2 and N2... 

    Energy transfer in a liquid filled elemental passage of a porous medium for permeability enhancement due to pulsations of a vapor bubble

    , Article Mechanika ; Volume 22, Issue 1 , 2016 , Pages 25-30 ; 13921207 (ISSN) Rambarzin, F ; Shervani Tabar, M. T ; Taeibi Rahni, M ; Tabatabaei Nejad, S. A ; Sharif University of Technology
    Kauno Technologijos Universitetas  2016
    Abstract
    In this paper, a novel method which has been proposed during the last decade for increasing of the permeability of porous media of petroleum reservoirs by transferring of energy via ultrasound waves is investigated numerically. Increasing of permeability of porous media of petroleum reservoirs results in enhancing of oil recovery. This technique is based on the idea of transferring of energy to the liquid filled porous media via the ultrasound waves and consequently producing of pulsating vapor bubbles. The generated vapor bubbles transfer the energy of ultrasound waves in the liquid filled passages of a porous medium through velocity and pressure fields in the liquid domain and in turn... 

    Effect of CO2 and natural surfactant of crude oil on the dynamic interfacial tensions during carbonated water flooding: experimental and modeling investigation

    , Article Journal of Petroleum Science and Engineering ; Volume 159 , 2017 , Pages 58-67 ; 09204105 (ISSN) Lashkarbolooki, M ; Riazi, M ; Ayatollahi, S ; Sharif University of Technology
    Abstract
    Carbonated water has been recently proposed as an enhanced oil recovery method for crude oil reservoirs. Interfacial tension (IFT) plays a crucial rule on the displacement of trapped oil ganglia in the porous media. This investigation is designed to systematically assess the dynamic interfacial tension (DIFT) of two different types of crude oils with carbonated water (CW). In addition, the measured experimental data were applied into specified models. The DIFT behavior of acidic and non-acidic crude oil samples/CW and deionized water (DW) are also compared to find the effect of dissolved carbon dioxide in water on IFT. At the next stage, DIFT of all the results were used through three... 

    Simulation study of Steam Assisted Gravity Drainage (SAGD) in fractured systems

    , Article Oil and Gas Science and Technology ; Volume 64, Issue 4 , 2009 , Pages 477-487 ; 12944475 (ISSN) Fatemi, S. M ; Sharif University of Technology
    2009
    Abstract
    The Steam Assisted Gravity Drainage (SAGD) process, a developed Enhanced Oil Recovery (EOR) process to recover oil and bitumen, has been studied theoretically and experimentally in conventional reservoirs and models and is found a promising EOR method for certain heavy oil reservoirs. In this work simulation studies of the SAGD process were made on different fractured models consisting of fractures in both Near Well Region (NWR) and Above Well Region (AWR) and even in the presence of networked fractures. At early stage of the SAGD process in fractured system, steam moves through the fractures first and then the matrix blocks are heated primarily by conduction and possibly some steam... 

    Development of a multi-objective decision-making model to recover flare gases in a multi flare gases zone

    , Article Energy ; Volume 203 , 2020 Hamidzadeh, Z ; Sattari, S ; Soltanieh, M ; Vatani, A ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    In this paper, a systematic investigation and modeling of all available technologies (such as NGL, injection in pipelines, LNG, GTL, NGH, and CNG plants, EOR, electricity production by thermal power plants, and water generation by MED technologies) for flare gas recovery has been developed. An optimal combination of the technologies has been proposed for flare gas recovery of five oil wells in the south of Iran with different specifications as case studies. The optimal combinations of all the technologies have been investigated with minimizing the payback period of capital costs (economical) and maximizing CO2 pollutant reduction (environmental) objective functions by using the genetic... 

    Effects of low salinity water on calcite/brine interface: a molecular dynamics simulation study

    , Article Colloids and Surfaces A: Physicochemical and Engineering Aspects ; Volume 537 , January , 2018 , Pages 61-68 ; 09277757 (ISSN) Koleini, M. M ; Fattahi Mehraban, M ; Ayatollahi, S ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    Calcite is among the most abundant minerals organizing the oil reservoir formation and therefore its surface properties play a central role in the increase of the oil recovery efficiency. The effect of low-salinity water in carbonate rocks reveals that brine composition and salinity can improve the oil recovery in carbonates through wettability alteration. However, the specific mechanism for wettability changes that leads to improved oil recovery in calcite is not well understood. To obtain deeper insights at atomic level into the understanding the characteristics of the calcite-water interface, we performed classical molecular dynamics simulations in the presence of different ions in brine...