Loading...
Search for: enhanced-surface
0.01 seconds

    Photoresponse enhancing in nanostructured WO3films by slight change in heating ambient

    , Article Journal of Alloys and Compounds ; Volume 693 , 2017 , Pages 871-875 ; 09258388 (ISSN) Naseri, N ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    Providing solar hydrogen as a clean energy resource is one of the human challenges for future. Controlling oxygen vacancies as well as surface morphology in metal oxide semiconductors enables developing PEC H2production in some understood ways. Here, the influence of simple change in annealing atmosphere, air and pure oxygen, on photoresponse of nanocrystalline WO3has been studied completely. Results revealed that such slight change in annealing procedure increases effective surface interface and donor density by 77 and 72%, respectively. These effects and also retarding recombination of photogenerated electro-hole pair resulted in photocurrent enhancement under solar like illumination more... 

    Visible light photocatalytic performance of Ag2O/ZnCr-LDH nanocomposite

    , Article Chemical Physics Letters ; Volume 751 , 2020 Akbarzadeh, E ; Rasteh, M ; Gholami, M. R ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    Ag2O particles were loaded on the surface of ZnCr-LDH via an anion-exchange precipitation approach by using privilege of the memory trace feature of the LDH-type materials. The structural properties of the resulted photocatalyst were explored by different spectroscopic and microscopic methods. The photocatalytic studies on acid black degradation ascertained that the prepared Ag2O/ZnCr-LDH nanocomposite represented an observably increased degradation performance of organic pollutants compared with pure Ag2O and ZnCr-LDH. This improved photocatalytic performance can be ascribed to the enhanced surface area, good order distributing of particles and effective charge carrier transfer and... 

    A dynamical approach to topography estimation in atomic force microscopy based on smooth orthogonal decomposition

    , Article Nonlinear Dynamics ; Volume 103, Issue 3 , 2021 , Pages 2345-2363 ; 0924090X (ISSN) Rafiee Javazam, M ; Nejat Pishkenari, H ; Sharif University of Technology
    Springer Science and Business Media B.V  2021
    Abstract
    Atomic force microscope (AFM) is one of the most versatile and powerful devices capable of producing high-resolution images of nanomaterial. Many researchers are widely investigating to improve the scanning speed and image quality of AFM by proposing different techniques. Here, we aim to present a novel approach based on the smooth orthogonal decomposition for the estimation of the surface topography in AFM. The technique proposed in this research not only eliminates the need for a closed-loop controller but also acquires the surface three-dimensional shape (topography) very quickly and accurately. The proposed technique relies on the fact that in the tapping mode of atomic force microscopy,... 

    Wire-Based friction stir processing as a novel pathway for solid-state surface alloying of magnesium

    , Article Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science ; Volume 52, Issue 11 , 2021 , Pages 4737-4741 ; 10735623 (ISSN) Zahiri Sabzevar, M ; Mousavizade, S. M ; Pouranvari, M ; Sharif University of Technology
    Springer  2021
    Abstract
    Wire-based friction stir processing is introduced as a solid-state surface alloying strategy for surface alloying of AZ31 magnesium alloy with aluminum, as a key alloying element in magnesium alloys. This technique enables the formation of a defect-free, grain refined and alloyed surface with the increased volume fraction of Mg-Al second phase, and thus, enhanced surface hardness. This simple technique provides a solid-state surface alloying pathway to improve the surface properties of the metallic materials. © 2021, The Minerals, Metals & Materials Society and ASM International