Loading...
Search for: entire-domain
0.004 seconds

    Numerical modeling of ureagenesis in a microfluidic channel mimicking a liver lobule

    , Article 2015 22nd Iranian Conference on Biomedical Engineering, ICBME 2015, 25 November 2015 through 28 November 2015 ; 2015 , Pages 54-59 ; 9781467393515 (ISBN) Sharifi, F ; Firoozabadi, B ; Saidi, M. S ; Firoozbakhsh, K ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2015
    Abstract
    Ammonia detoxification is one of the main functions of the liver results in production of urea. In this study ammonia elimination and urea production was simulated in a microchannel mimicking the hepatic porto central axis. Navier- Stockes equations along with convection equations were solved for the related species in the entire domain. Since the Reynolds number was small (~1) the fluid flow regime was laminar. Urea cycle was modeled regarding its four main enzymes. Twelve rate equations were also solved in order to obtain the concentration of each metabolites participating in urea cycle. Concentration of the urea reached its maximum ca. 1.2e-5 M at the end of the channel which is in good... 

    A discretized analytical solution for fully coupled non-linear simulation of heat and mass transfer in poroelastic unsaturated media

    , Article International Journal for Numerical and Analytical Methods in Geomechanics ; Volume 33, Issue 13 , 2009 , Pages 1589-1611 ; 03639061 (ISSN) Arfaei Malekzadeh, F ; Pak, A ; Sharif University of Technology
    2009
    Abstract
    Mathematical simulation of non-isothermal multiphase flow in deformable unsaturated porous media is a complicated issue because of the need to employ multiple partial differential equations, the need to take into account mass and energy transfer between phases and because of the non-linear nature of the governing partial differential equations. In this paper, an analytical solution for analyzing a fully coupled problem is presented for the one-dimensional case where the coefficients of the system of equations are assumed to be constant for the entire domain. A major issue is the non-linearity of the governing equations, which is not considered in the analytical solution. In order to...