Loading...
Search for: entrainment-coefficient
0.006 seconds

    Experimental and Theoretical Investigation on Entrainment Coefficient in Density Current and Introducing Modified Richardson Number

    , M.Sc. Thesis Sharif University of Technology Maleki Tehrani , Mahdi (Author) ; Firoozabadi, Bahar (Supervisor)
    Abstract
    Dense underflows are continuous currents, caused by interaction of two or more fluids of different density. Density currents move down-slope due their density being heavier than that of the ambient water. In this work, entrainment in 3-D density currents in a straight channel was investigated by a set of experimental studies and Theoretical calculations. Velocity components were measured using Acoustic Doppler Velocimetry (ADV). First of all, the bed shear stress was calculated by the velocity profile method and Reynolds stress method as well and showed a good agreement. By increasing the Richardson number, the bed shear stress decreases. On the other hand, the interface shear stress was... 

    Characteristic variables and entrainment in 3-D density currents

    , Article Scientia Iranica ; Volume 15, Issue 5 , 2008 , Pages 575-583 ; 10263098 (ISSN) Hormozi, S ; Firoozabadi, B ; Ghasvari Jahromi, H ; Sharif University of Technology
    Sharif University of Technology  2008
    Abstract
    A CFD code has been developed to describe the salt solution density current, which propagates three-dimensionally in deep ambient water. The height and width of the dense layer are two dominated length scales in a 3-D structure of the density current. In experimental efforts, it is common to measure the height and width of this current via its brightness. Although there are analytical relations to calculate the current height in a two-dimensional flow, these relations cannot be used to identify the width and height of a 3-D density current, due to the existence of two unknown parameters. In the present model, the height and width of the dense layer are obtained by using the boundary layer...