Loading...
Search for: enzyme-loading
0.005 seconds

    Lipase immobilisation on magnetic silica nanocomposite particles: Effects of the silica structure on properties of the immobilised enzyme

    , Article Journal of Materials Chemistry ; Volume 22, Issue 17 , 2012 , Pages 8385-8393 ; 09599428 (ISSN) Kalantari, M ; Kazemeini, M ; Tabandeh, F ; Arpanaei, A ; Sharif University of Technology
    2012
    Abstract
    Uniformly sized superparamagnetic single-shell nonporous (S1) and double-shell mesoporous silica nanocomposite particles with ∼130 nm magnetite cluster cores are synthesised in this study. Mesoporous particles are prepared with two BJH pore sizes (2.44 and 3.76 nm, designated as S2 and S3 particles, respectively). Once the lipase was immobilised on particles, our results showed that the enzyme loading capacities of mesoporous structures, i.e. S2 and S3, are higher than that for nonporous particles (S1). Hydrolytic activity tests reveal that immobilised lipases retain about 90% of the free enzyme's activity. Furthermore, comparing to the free enzyme, the thermal stability of immobilised...