Search for: epigallocatechin-gallate
0.006 seconds

    Investigation of Anticancer Drug Metabolism in Saccharomyces Cerevisiae as a Drug Resistance Model

    , M.Sc. Thesis Sharif University of Technology Hamed Rahimi, Reza (Author) ; Yaghmaei, Soheila (Supervisor) ; Sardari, Soroush (Supervisor)
    Cancer is a life-threatening group of diseases that arises from the uncontrolled growth and division of cells in the body. Treatment options for cancer include surgery, chemotherapy, radiation therapy, immunotherapy, targeted therapy, and hormone therapy. However, resistance to anticancer drugs can develop through a variety of mechanisms, such as the upregulation of drug efflux pumps and alterations in DNA repair mechanisms. One common mechanism of drug resistance is through changes in metabolism, where cancer cells switch to alternative metabolic pathways to survive and evade the effects of anticancer drugs. The development of new drugs targeting specific molecules and pathways involved in... 

    Increasing the antioxidant activity of green tea polyphenols in the presence of iron for the reduction of graphene oxide

    , Article Carbon ; Volume 50, Issue 8 , 2012 , Pages 3015-3025 ; 00086223 (ISSN) Akhavan, O ; Kalaee, M ; Alavi, Z. S ; Ghiasi, S. M. A ; Esfandiar, A ; Sharif University of Technology
    An easy method for green and low-temperature (40 °C) reduction of graphene oxide (GO) by increasing the antioxidant activity of green tea polyphenols (GTPs) in the presence of iron was developed. The reduction level (obtained by X-ray photoelectron spectroscopy) and electrical conductivity (obtained by current-voltage measurement) of the GO sheets reduced by GTPs in the presence of iron were comparable to those of hydrazine-reduced GO and much better than those of the GO reduced by only GTPs (in the absence of iron) at reduction temperatures of 40-80 °C. Raman spectroscopy indicated that application of GTPs in the presence of iron, in contrast to hydrazine, resulted in better recovering of... 

    Recent advances in the design and applications of amyloid-β peptide aggregation inhibitors for Alzheimer’s disease therapy

    , Article Biophysical Reviews ; Volume 11, Issue 6 , 2019 , Pages 901-925 ; 18672450 (ISSN) Jokar, S ; Khazaei, S ; Behnammanesh, H ; Shamloo, A ; Erfani, M ; Beiki, D ; Bavi, O ; Sharif University of Technology
    Springer  2019
    Alzheimer’s disease (AD) is an irreversible neurological disorder that progresses gradually and can cause severe cognitive and behavioral impairments. This disease is currently considered a social and economic incurable issue due to its complicated and multifactorial characteristics. Despite decades of extensive research, we still lack definitive AD diagnostic and effective therapeutic tools. Consequently, one of the most challenging subjects in modern medicine is the need for the development of new strategies for the treatment of AD. A large body of evidence indicates that amyloid-β (Aβ) peptide fibrillation plays a key role in the onset and progression of AD. Recent studies have reported... 

    Review on alzheimer's disease: inhibition of amyloid beta and tau tangle formation

    , Article International Journal of Biological Macromolecules ; Volume 167 , 2021 , Pages 382-394 ; 01418130 (ISSN) Ashrafian, H ; Hadi Zadeh, E ; Hasan Khan, R ; Sharif University of Technology
    Elsevier B.V  2021
    It is reported that approximately 40 million people are suffering from dementia, globally. Dementia is a group of symptoms that affect neurons and cause some mental disorders, such as losing memory. Alzheimer's disease (AD) which is known as the most common cause of dementia, is one of the top medical care concerns across the world. Although the exact sources of the disease are not understood, is it believed that aggregation of amyloid-beta (Aβ) outside of neuron cells and tau aggregation or neurofibrillary tangles (NFTs) formation inside the cell may play crucial roles. In this paper, we are going to review studies that targeted inhibition of amyloid plaque and tau protein tangle formation,...