Loading...
Search for: error-modeling
0.008 seconds

    Application of artificial neural network to predict the effects of severe shot peening on properties of low carbon steel

    , Article Advanced Structured Materials ; Volume 61 , 2016 , Pages 45-60 ; 18698433 (ISSN) Maleki, E ; Farrahi, G. H ; Sherafatnia, K ; Sharif University of Technology
    Springer Verlag  2016
    Abstract
    Mechanical failures in most cases originate from the exterior layers of the components. It is considerably effective to apply methods and treatments capable to improve the mechanical properties on component’s surface. Surface nanocrystallization produced by severe plastic deformation (SPD) processes such as severe shot peening (SSP) is increasingly considered in the recent years. However, artificial intelligence systems such as artificial neural network (ANN) as an efficient approach instead of costly and time consuming experiments is widely employed to predict and optimize the science and engineering problems in the last decade. In the present study the application of ANN in predicting of... 

    Discrimination of bilateral finger photoplethysmogram responses to reactive hyperemia in diabetic and healthy subjects using a differential vascular model framework

    , Article Physiological Measurement ; Volume 34, Issue 5 , 2013 , Pages 513-525 ; 09673334 (ISSN) Keikhosravi, A ; Aghajani, H ; Zahedi, E ; Sharif University of Technology
    2013
    Abstract
    Endothelial dysfunction assessment has received considerable attention due to its potential in early screening of cardiovascular diseases. Since the seminal work by Celermajer in flow-mediated dilation (FMD) based on B-mode ultrasound measurement of the brachial artery dilation following limb ischemia, many attempts have been made toward applying this method to clinical, non-invasive endothelial dysfunction assessment. One major obstacle toward achieving this objective has been the relative high cost of the required setup and skilled manpower. Such limitations have prompted the investigation of other non-invasively accessible signals such as the photoplethysmogram (PPG) in relation to FMD.... 

    Topological code autotune

    , Article Physical Review X ; Volume 2, Issue 4 , October , 2012 ; 21603308 (ISSN) Fowler, A. G ; Whiteside, A. C ; McInnes, A. L ; Rabbani, A ; Sharif University of Technology
    2012
    Abstract
    Many quantum systems are being investigated in the hope of building a large-scale quantum computer. All of these systems suffer from decoherence, resulting in errors during the execution of quantum gates. Quantum error correction enables reliable quantum computation given unreliable hardware. Unoptimized topological quantum error correction (TQEC), while still effective, performs very suboptimally, especially at low error rates. Hand optimizing the classical processing associated with a TQEC scheme for a specific system to achieve better error tolerance can be extremely laborious. We describe a tool, AUTOTUNE, capable of performing this optimization automatically, and give two highly... 

    Bias correction of climate modeled temperature and precipitation using artificial neural networks

    , Article Journal of Hydrometeorology ; Volume 18, Issue 7 , 2017 , Pages 1867-1884 ; 1525755X (ISSN) Moghim, S ; Bras, R. L ; Sharif University of Technology
    Abstract
    Climate studies and effective environmental management require unbiased climate datasets. This study develops a new bias correction approach using a three-layer feedforward neural network to reduce the biases of climate variables (temperature and precipitation) over northern South America. Air and skin temperature, specific humidity, and net longwave and shortwave radiation are used as inputs to the network for bias correction of 6-hourly temperature. Inputs to the network for bias correction of monthly precipitation are precipitation at lag 0, 1, 2, and 3 months, and also the standard deviation of precipitation from 3 × 3 neighbors around the pixel of interest. The climate model data are... 

    Quantitative evaluation of parameters affecting the accuracy of Microsoft Kinect in GAIT analysis

    , Article 2016 23rd Iranian Conference on Biomedical Engineering and 2016 1st International Iranian Conference on Biomedical Engineering, ICBME 2016, 23 November 2016 through 25 November 2016 ; 2017 , Pages 306-311 ; 9781509034529 (ISBN) Jamali, Z ; Behzadipour, S ; Sharif University of Technology
    Abstract
    To date various commercial systems have been used in the GAIT analysis. These systems have some difficulties for clinical use, such as interfering with normal movement and high prices. The possibility of utilization of Kinect as a sensor for GAIT analysis has been studied in this research. The accuracy of Kinect in calculation of GAIT parameters such as lower limb joint angles, stride time, and stride length were computed during normal walking. The effects of the sensor's position and direction relative to the walkway were also investigated. The Kinect sensor was installed at different positions toward the motion path. In each position the data was recorded by both Kinect and a commercial... 

    INL prediction method in pipeline ADCs

    , Article APCCAS 2006 - 2006 IEEE Asia Pacific Conference on Circuits and Systems, 4 December 2006 through 6 December 2006 ; 2006 , Pages 13-16 ; 1424403871 (ISBN); 9781424403875 (ISBN) Nikandish, G ; Sedighi, B ; Bakhtiar, M. S ; Sharif University of Technology
    2006
    Abstract
    In this paper a general method for system level prediction of INL in pipeline analog to digital converters is presented. For each stage of the ADC, a new error model consisting of an input referred gain error and a nonlinear term is introduced. An analytic method to calculate INL from all error sources is presented. INL model for a switched-capacitor implementation is also presented. ©2006 IEEE  

    New considerations in modern protection system quantitative reliability assessment

    , Article IEEE Transactions on Power Delivery ; Vol. 25, issue. 4 , 2010 , p. 2213-2222 ; ISSN: 8858977 Etemadi, A. H ; Fotuhi-Firuzabad, M ; Sharif University of Technology
    Abstract
    Protective relay technologies have evolved from single-function electromechanical and static relays to modern multifunction digital relays over the past few years. Protection systems play a vital role in maintaining a desirable level of reliability in power systems. Thus, their own reliability should be evaluated and any cause of their malfunction should be fully comprehended. In this paper, a new reliability model is proposed that associates protection system failures to four main causes: 1) relay hardware, 2) relay software, 3) ancillary equipment, and 4) human error. In addition, this model can take other aspects of the protection system into consideration, such as human error during... 

    Processing algorithm for a strapdown gyrocompass

    , Article Scientia Iranica ; Volume 19, Issue 3 , 2012 , Pages 774-781 ; 10263098 (ISSN) Hemmati, M ; Massoumnia, M. A ; Sharif University of Technology
    2012
    Abstract
    The problem of gyrocompassing using inertial sensors, i.e., gyros and accelerometers, is addressed. North finding, with an order of accuracy of one arc-min, is not only required for the initial alignment of inertial navigation systems, but also has a critical role to play in the guidance and navigation of ships that navigate for long periods of time. In this work, after extracting the error model of an inertial navigation system and augmenting it with the error model of inertial sensors, a processing algorithm based on the Kalman filter is designed and simulated to process the navigation system velocity error, and to estimate and correct tilt and heading errors along with gyro drifts and... 

    Computational-based approach for predicting porosity of electrospun nanofiber mats using response surface methodology and artificial neural network methods

    , Article Journal of Macromolecular Science, Part B: Physics ; Volume 54, Issue 11 , 2015 , Pages 1404-1425 ; 00222348 (ISSN) Hadavi Moghadam, B ; Khodaparast Haghi, A ; Kasaei, S ; Hasanzadeh, M ; Sharif University of Technology
    Taylor and Francis Inc  2015
    Abstract
    Comparative studies between response surface methodology (RSM) and artificial neural network (ANN) methods to find the effects of electrospinning parameters on the porosity of nanofiber mats is described. The four important electrospinning parameters studied included solution concentration (wt.%), applied voltage (kV), spinning distance (cm) and volume flow rate (mL/h). It was found that the applied voltage and solution concentration are the two critical parameters affecting the porosity of the nanofiber mats. The two approaches were compared for their modeling and optimization capabilities with the modeling capability of RSM showing superiority over ANN, having comparatively lower values of... 

    New considerations in modern protection system quantitative reliability assessment

    , Article IEEE Transactions on Power Delivery ; Volume 25, Issue 4 , September , 2010 , Pages 2213-2222 ; 08858977 (ISSN) Etemadi, A. H ; Fotuhi Firuzabad, M ; Sharif University of Technology
    2010
    Abstract
    Protective relay technologies have evolved from single-function electromechanical and static relays to modern multifunction digital relays over the past few years. Protection systems play a vital role in maintaining a desirable level of reliability in power systems. Thus, their own reliability should be evaluated and any cause of their malfunction should be fully comprehended. In this paper, a new reliability model is proposed that associates protection system failures to four main causes: 1) relay hardware, 2) relay software, 3) ancillary equipment, and 4) human error. In addition, this model can take other aspects of the protection system into consideration, such as human error during... 

    On deterministic approaches to attitude determination with magnometer in eclipse

    , Article 2010 Chinese Control and Decision Conference, CCDC 2010, 26 May 2010 through 28 May 2010, Xuzhou ; 2010 , Pages 3754-3759 ; 9781424451821 (ISBN) Moodi, H ; Bustan, D ; Sharif University of Technology
    2010
    Abstract
    A gyroless deterministic attitude determination algorithm based on simulation of sun in eclipse is stated in this paper and has been compared to stochastic filters like extended Kalman filter and unscented Kalman filter. Attitude determination with low cost sensors such as magnometer and sun sensor results in usage of recursive algorithms such as Kalman filter which has the probability of divergence, but with deterministic point to point algorithm such as the one introduced in this paper we can be sure to have an attitude determination with a fixed maximum error. Proposed method has been compared with Extended Kalman Filter and Unscented Kalman filter due to its modeling error, robustness... 

    Design of an RMPC with a time-varying terminal constraint set for tracking problem

    , Article International Journal of Robust and Nonlinear Control ; Volume 26, Issue 12 , 2016 , Pages 2623-2642 ; 10498923 (ISSN) Razi, M ; Haeri, M ; Sharif University of Technology
    John Wiley and Sons Ltd  2016
    Abstract
    This paper presents a robust model predictive control algorithm with a time-varying terminal constraint set for systems with model uncertainty and input constraints. In this algorithm, the nonlinear system is approximated by a linear model where the approximation error is considered as an unstructured uncertainty that can be represented by a Lipschitz nonlinear function. A continuum of terminal constraint sets is constructed off-line, and robust stability is achieved on-line by using a variable control horizon. This approach significantly reduces the computational complexity. The proposed robust model predictive controller with a terminal constraint set is used in tracking set-points for... 

    Network-level pavement roughness prediction model for rehabilitation recommendations

    , Article Transportation Research Record ; Issue 2155 , 2010 , Pages 124-133 ; 03611981 (ISSN) Kargah Ostadi, N ; Stoffels, S. M ; Tabatabaee, N ; Sharif University of Technology
    Abstract
    Pavement performance models are key components of any pavement management system (PMS). These models are used in a network-level PMS to predict future performance of a pavement section and identify the maintenance and rehabilitation needs. They are also used to estimate the network conditions after the application of various maintenance and rehabilitation alternatives and to determine the relative cost effectiveness of each maintenance and rehabilitation alternative. Change in pavement surface roughness over time is one of the most important performance indicators in this regard. A model for changes in the international roughness index (IRI) over time was developed through artificial neural... 

    Comparison of two mathematical models for correlating the organic matter removal efficiency with hydraulic retention time in a hybrid anaerobic baffled reactor treating molasses

    , Article Bioprocess and Biosystems Engineering ; Volume 35, Issue 3 , 2012 , Pages 389-397 ; 16157591 (ISSN) Ghaniyari Benis, S ; Martín, A ; Borja, R ; Martin, M. A ; Hedayat, N ; Sharif University of Technology
    Abstract
    A modelling of the anaerobic digestion process of molasses was conducted in a 70-L multistage anaerobic biofilm reactor or hybrid anaerobic baffled reactor with six compartments at an operating temperature of 26 °C. Five hydraulic retention times (6, 16, 24, 72 and 120 h) were studied at a constant influent COD concentration of 10,000 mg/L. Two different kinetic models (one was based on a dispersion model with first-order kinetics for substrate consumption and the other based on a modification of the Young equation) were evaluated and compared to predict the organic matter removal efficiency or fractional conversion. The first-order kinetic constant obtained with the dispersion model was... 

    Sagittal range of motion of the thoracic spine using inertial tracking device and effect of measurement errors on model predictions

    , Article Journal of Biomechanics ; Volume 49, Issue 6 , 2016 , Pages 913-918 ; 00219290 (ISSN) Hajibozorgi, M ; Arjmand, N ; Sharif University of Technology
    Elsevier Ltd 
    Abstract
    Range of motion (ROM) of the thoracic spine has implications in patient discrimination for diagnostic purposes and in biomechanical models for predictions of spinal loads. Few previous studies have reported quite different thoracic ROMs. Total (T1-T12), lower (T5-T12) and upper (T1-T5) thoracic, lumbar (T12-S1), pelvis, and entire trunk (T1) ROMs were measured using an inertial tracking device as asymptomatic subjects flexed forward from their neutral upright position to full forward flexion. Correlations between body height and the ROMs were conducted. An effect of measurement errors of the trunk flexion (T1) on the model-predicted spinal loads was investigated. Mean of peak voluntary total... 

    Modeling, simulation, and optimal initiation planning for needle insertion into the liver

    , Article Journal of Biomechanical Engineering ; Volume 132, Issue 4 , 2010 ; 01480731 (ISSN) Sharifi Sedeh, R ; Ahmadian, M. T ; Janabi Sharifi, F ; Sharif University of Technology
    2010
    Abstract
    Needle insertion simulation and planning systems (SPSs) will play an important role in diminishing inappropriate insertions into soft tissues and resultant complications. Difficulties in SPS development are due in large part to the computational requirements of the extensive calculations in finite element (FE) models of tissue. For clinical feasibility, the computational speed of SPSs must be improved. At the same time, a realistic model of tissue properties that reflects large and velocity-dependent deformations must be employed. The purpose of this study is to address the aforementioned difficulties by presenting a cost-effective SPS platform for needle insertions into the liver. The study...