Loading...
Search for: exchange-current-densities
0.007 seconds

    Artificial neural network simulator for supercapacitor performance prediction

    , Article Computational Materials Science ; Volume 39, Issue 3 , 2007 , Pages 678-683 ; 09270256 (ISSN) Farsi, H ; Gobal, F ; Sharif University of Technology
    2007
    Abstract
    Artificial neural network was used to calculate the performance of a model supercapacitor as signified by the power density, energy density and utilization to the synthetic, intrinsic and operating characteristics. A four-layer neural net having two hidden layers having 6 and 15 nodes was found to be well capable of simulating the capacitor performance with the convergence achieved often a relatively small number of epochs. As for the input parameters, crystal size, surface lattice length, exchange current density of the capacitor active material and the cell current employed while utilization, energy density and power density were the outputs. © 2006 Elsevier B.V. All rights reserved  

    A comparative study of the electrooxidation of C1 to C3 aliphatic alcohols on Ni modified graphite electrode

    , Article Science China Chemistry ; Volume 55, Issue 9 , 2012 , Pages 1819-1824 ; 16747291 (ISSN) Jafarian, M ; Mirzapoor, A ; Danaee, I ; Shahnazi, S. A. A ; Gobal, F ; Sharif University of Technology
    Abstract
    Nickel modified graphite electrodes (G/Ni) prepared by galvanostatic deposition were examined for their redox process and electrocatalytic activities towards the oxidation of methanol, ethanol, 1-propanol and 2-propanol in alkaline solutions. The methods of cyclic voltammetry (CV), chronoamperometry (CA) and impedance spectroscopy (EIS) were employed. In CV studies, the electrochemical response, peak current varied in the order of MeOH > EtOH > 1-PrOH > 2-PrOH. Under the CA regime, a higher catalytic rate constant obtained for methanol oxidation was in agreement with CV measurements. Lower charge transfer resistance was obtained for low carbon alcohols oxidation and significantly higher...