Loading...
Search for: experimental-approaches
0.005 seconds
Total 23 records

    Estimation of damage induced by single-hole rock blasting: A review on analytical, numerical, and experimental solutions

    , Article Energies ; Volume 14, Issue 1 , 2021 ; 19961073 (ISSN) Shadabfar, M ; Gokdemir, C ; Zhou, M ; Kordestani, H ; Muho, E. V ; Sharif University of Technology
    MDPI AG  2021
    Abstract
    This paper presents a review of the existing models for the estimation of explosion-induced crushed and cracked zones. The control of these zones is of utmost importance in the rock explosion design, since it aims at optimizing the fragmentation and, as a result, minimizing the fine grain production and recovery cycle. Moreover, this optimization can reduce the damage beyond the set border and align the excavation plan with the geometric design. The models are categorized into three groups based on the approach, i.e., analytical, numerical, and experimental approaches, and for each group, the relevant studies are classified and presented in a comprehensive manner. More specifically, in the... 

    Experimental evaluation of ship squat in shallow waters

    , Article Journal of the Brazilian Society of Mechanical Sciences and Engineering ; Vol. 36, Issue. 3 , 2014 , pp. 559-569 ; ISSN: 1806-3691 Kazerooni, M. F ; Seif, M. S ; Sharif University of Technology
    Abstract
    Enlargement of ship size in recent decades and no change in the harbors and approach channels have resulted in global attention toward navigation in shallow and confined waters. A phenomenon which restricts ship navigation in shallow waters is reduction of under-keel clearance in terms of sinkage and dynamic trim, which is called squatting. Due to the complexity of flow around the ship hull, one of the best methods for predicting the ship squat is the experimental approach based on systematic model tests in the towing tank. In this study, model tests for tanker ship model and traditional Persian Gulf and Oman Sea vessel called dhow had been performed in the towing tank and the squat of the... 

    Characterization of the effect of disturbance on the hydro-mechanical behavior of a highly collapsible loessial soil

    , Article Unsaturated Soils: Research and Applications - Proceedings of the 6th International Conference on Unsaturated Soils, UNSAT 2014 ; Vol. 1, issue , 2014 , p. 261-266 Haeri, S. M ; Khosravi, A ; Ghaizadeh, S ; Garakani, A. A ; Meehan, C. L ; Sharif University of Technology
    Abstract
    Highly collapsible loessial soils are characterized by an open void structure that can experience significant settlement upon loading. In the field, these partially saturated Aeolian deposits are particularly susceptible to wetting-induced collapse. Due to difficulties in preparing undisturbed specimens from highly collapsible soils, previous studies have generally performed laboratory tests on reconstituted specimens with different water contents and densities, and the effect of disturbance on the initial state of the soil was ignored. Disturbance in highly collapsible soil specimens may significantly affect the natural composition of the soil matrix, the non-homogeneous distribution of... 

    Simultaneous versus sequential adsorption of β-casein/SDS mixtures. Comparison of water/air and water/hexane interfaces

    , Article ACS Symposium Series ; Volume 1120 , 2012 , Pages 153-178 ; 00976156 (ISSN) ; 9780841227965 (ISBN) Dan, A ; Gochev, G ; Kotsmar, Cs ; Ferri, J. K ; Javadi, A ; Karbaschi, M ; Krägel, J ; Wüstneck, R ; Miller, R ; Sharif University of Technology
    2012
    Abstract
    This chapter is dedicated to the surface properties of mixed protein/surfactant adsorption layers, formed by two different experimental approaches, i.e. by sequential and simultaneous adsorption, respectively. A special modification of a drop profile analysis tensiometer, consisting of a coaxial double capillary, provides a unique protocol for studies of mixed surface layers formed by sequential adsorption of the individual components in addition to the traditional simultaneous adsorption from their mixed solution. A CFD simulation allowed to optimize the drop exchange process performed with the special double capillary arrangement. The experiments show that properties of sequentially formed... 

    Novel approach for liquid-liquid phase equilibrium of biodiesel (canola and sunflower) + glycerol + methanol

    , Article Industrial and Engineering Chemistry Research ; Vol. 53, issue. 2 , 2014 , pp. 855-864 ; ISSN: 08885885 Hakim, M ; Abedini Najafabadi, H ; Pazuki, G ; Vossoughi, M ; Sharif University of Technology
    Abstract
    In this study, a novel experimental approach was used to overcome the lack of phase equilibrium information to obtain data that is more applicable to industrial situations. Liquid-liquid equilibrium (LLE) data, tie-lines, and phase boundaries were carried out for two systems of canola oil methyl esters (containing 1 wt % KOH) + glycerol + methanol and sunflower oil methyl esters (containing 1 wt % KOH) + glycerol + methanol at three different temperatures (303.15, 313.15, and 323.15 K). The quality of data was also ascertained using Othmer-Tobias correlations. The experimental LLE data was also correlated by the nonrandom two-liquid (NRTL) and the Wilson-NRF Gibbs free energy models. The... 

    A new experimental approach to investigate the induced force and velocity fields on a particulate manipulation mechanism

    , Article Scientia Iranica ; Vol. 21, Issue 2 , 2014 , pp. 414-424 ; ISSN: 10263098 Zabetian, M ; Shafii, M. B ; Saidi, M. H ; Saidi, M. S ; Rohani, R ; Sharif University of Technology
    Abstract
    Identification and minimization of error sources are important issues in experimental investigations. Mainly in micro-scale problems, precise settings should be applied to high-tech test beds to reduce disturbance and induced motion. An experimental study is conducted to assess the role of induced forces and velocity fields in a particulate system used for particle identification and separation. Two main effects caused by disturbances are sampling errors and induced motion in the channel, either on fluid or dispersed phases. Different disturbance scenarios are implemented on the test bed and then the system response is reported. In order to assess induced motion as a result of applied... 

    Determination of optimum injection flow rate to achieve maximum micro bubble drag reduction in ships; An experimental approach

    , Article Scientia Iranica ; Volume 20, Issue 3 , 2013 , Pages 535-541 ; 10263098 (ISSN) Sayyaadi, H ; Nematollahi, M ; Sharif University of Technology
    2013
    Abstract
    Reduction in ship resistance, in order to decrease fuel consumption and also achieve higher speeds, has been the topic of major research over the last three decades. One of the most attractive ideas in this field is micro bubble drag reduction, which attempts to obtain optimum injection flow rate based on ship specifications. The model test results of a 70 cm catamaran model was used to quantify the effect of air injection rate on drag reduction, and to estimate a simple formulation for calculating an efficient injection rate by considering the main parameters of the ship, such as: length, width and speed. The test results show that excessive air injection decreases the drag reduction... 

    Exergy analysis of Airlift Systems: Experimental approach

    , Article International Journal of Exergy ; Volume 8, Issue 4 , 2011 , Pages 407-424 ; 17428297 (ISSN) Hanafizadeh, P ; Ghanbarzadeh, S ; Saidi, M. H ; Sharif University of Technology
    Abstract
    Airlift Systems (ALS) are widely used in various industrial applications. As the main part of the flow through ALS's upriser pipe, is formed by gas-liquid flow, the analysis of such systems will be accompanied by problems of two-phase flow modelling. Several effective variables are involved in ALS; thereupon comprehensive method is needed to consider these parameters. Exergy analysis can be considered as a simple solution for the realisation of the preferred domain of ALS's operation. Here, this method has been proposed to examine the performance of ALS. Based on thermodynamic principles, an analytical model has been implemented in each phase and the respective experimental data have been... 

    RANS simulation of interceptor effect on hydrodynamic coefficients of longitudinal equations of motion of planing catamarans

    , Article Journal of the Brazilian Society of Mechanical Sciences and Engineering ; Volume 37, Issue 4 , July , 2015 , Pages 1257-1275 ; 16785878 (ISSN) Najafi, A ; Alimirzazadeh, S ; Seif, M. S ; Sharif University of Technology
    Springer Verlag  2015
    Abstract
    Understanding and investigation of a high-speed craft dynamics, their longitudinal dynamic instabilities in calm water and behavior in waves are of a great importance. Determination of motion equation coefficients will help to analyze the dynamics of these kinds of vessels and the factors affecting their dynamic stabilities. Therefore, it could be useful in controlling the vessel instabilities. The main purpose of this research is to determine the coefficients of longitudinal motions of a planing catamaran using computational fluid dynamics (CFD) and evaluating the interceptor effect on hydrodynamic coefficients of that, which is widely utilized in controlling the motions of a high-speed... 

    Development of a semi-empirical method for hydro-aerodynamic performance evaluation of an AAMV, in take-off phase

    , Article Journal of the Brazilian Society of Mechanical Sciences and Engineering ; Volume 37, Issue 3 , May , 2015 , Pages 987-999 ; 16785878 (ISSN) Maali Amiri, M ; Tavakoli Dakhrabadi, M ; Seif, M. S ; Sharif University of Technology
    Springer Verlag  2015
    Abstract
    An assessment of the relative speeds and payload capacities of airborne and waterborne vehicles accentuates a gap that can be usefully filled by a new vehicle concept, making use of both hydrodynamic and aerodynamic forces. A high speed marine vehicle equipped with aerodynamic surfaces (called an AAMV, ‘aerodynamically alleviated marine vehicle’) is one such concept. There are three major modes of motion in the operation of an AAMV including take-off, cruising and landing. However, during take-off, hydrodynamic and aerodynamic problems of an AAMV interact with each other in a coupled manner, which make the evaluation of this phase much more difficult. In this article, at first aerodynamic... 

    Using nano-QSAR to determine the most responsible factor(s) in gold nanoparticle exocytosis

    , Article RSC Advances ; Volume 5, Issue 70 , 2015 , Pages 57030-57037 ; 20462069 (ISSN) Bigdeli, A ; Hormozi Nezhad, M. R ; Parastar, H ; Sharif University of Technology
    Royal Society of Chemistry  2015
    Abstract
    There are, to date, few general answers to fundamental questions related to the interactions of nanoparticles (NPs) with living cells. Studies reported in the literature have delivered only limited principles about the nano-bio interface and thus the biological behavior of NPs is yet far from being completely understood. Combining computational tools with experimental approaches in this regard helps to precisely probe the nano-bio interface and allows the development of predictive and descriptive relationships between the structure and the activity of nanomaterials. In the present contribution, a nano-quantitative structure-activity relationship (nano-QSAR) model has been statistically... 

    A combination of PSO and K-means methods to solve haplotype reconstruction problem

    , Article 2009 International Conference on Innovations in Information Technology, IIT '09, 15 December 2009 through 17 December 2009 ; 2009 , Pages 190-194 ; 9781424456987 (ISBN) Sharifian R, S ; Baharian, A ; Asgarian, E ; Rasooli, A ; Sharif University of Technology
    Abstract
    Disease association study is of great importance among various fields of study in bioinformatics. Computational methods happen to be advantageous specifically when experimental approaches fail to obtain accurate results. Haplotypes are believed to be the most responsible biological data for genetic diseases. In this paper, the problem of reconstructing haplotypes from error-containing SNP fragments is discussed For this purpose, two new methods have been proposed by a combination of k-means clustering and particle swarm optimization algorithm. The methods and their implementation results on real biological and simulation datasets are represented which shows that they outperform the methods... 

    Controlling the properties of TiO2 nanoparticles generated by nanosecond laser ablation in liquid solution

    , Article Laser Physics ; Volume 28, Issue 8 , 2018 ; 1054660X (ISSN) Pashazadeh, M ; Irani, E ; Golzan, M. M ; Sadighi Bonabi, R ; Sharif University of Technology
    Institute of Physics Publishing  2018
    Abstract
    Laser ablation of titanium target in distilled water for synthesis of colloidal nanoparticles is studied both experimentally and theoretically. The effects of laser parameters such as wavelength, pulse energy, fluence and shot numbers on the ablation rate and size properties of colloidal nanoparticles are investigated. The experimental approach addresses the interesting issue for finding the optimal main experimental parameters of laser ablation. The theoretical thermal model of nanosecond pulsed laser ablation is developed to visualize the evolution of temperature distributions and ablation depth. The simulation result of ablation depth has been compared with the experimental result... 

    Mechanistic study to investigate the effects of different gas injection scenarios on the rate of asphaltene deposition: An experimental approach

    , Article Fuel ; Volume 262 , 2020 Dashti, H ; Zanganeh, P ; Kord, S ; Ayatollahi, S ; Amiri, A ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Asphaltene deposition during enhanced oil recovery (EOR) processes is one of the most problematic challenges in the petroleum industry, potentially resulting in flow blockage. Our understanding of the deposition mechanism with emphasis on the rate of the asphaltene deposition is still in its infancy and must be developed through a range of experiments and modelling studies. This study aims to investigate the rate of asphaltene deposition through a visual study under different gas injection scenarios. To visualise the asphaltene deposition, a high-pressure setup was designed and constructed, which enables us to record high-quality images of the deposition process over time. Present research... 

    Direct pore-scale modeling of two-phase flow: investigation of the effect of interfacial tension and contact angle

    , Article Special Topics and Reviews in Porous Media ; Volume 12, Issue 3 , 2021 , Pages 71-88 ; 21514798 (ISSN) Azizi, Q ; Hashemabadi, S. H ; Alamooti, A. H. M ; Sharif University of Technology
    Begell House Inc  2021
    Abstract
    The process of fluid flow displacement in porous media has recently gained great prominence owing to its widespread usage in a variety of industries, especially in the case of pore scale investigations. Although, many studies have been conducted to address pore-scale investigations in both modeling and experimental approaches, the role of interfacial tension and contact angle on pore-scale phenomena is less focused. In this work, direct pore-scale modeling was used to precisely examine the effect of interfacial tension and contact angle on the fluid flow at the microscale. Also, several pore-scale mechanisms, including Haines jump and dynamic breakup mechanisms, were observed. Therefore, the... 

    On the induced airflow and particle resuspension due to a falling disk

    , Article Particulate Science and Technology ; Volume 31, Issue 2 , Jun , 2013 , Pages 190-198 ; 02726351 (ISSN) Sajadi, B ; Saidi, M. H ; Ahmadi, G ; Kenney, S. M ; Taylor, J ; Sharif University of Technology
    2013
    Abstract
    In this article, the induced airflow and the resultant particles resuspension due to a disk falling freely under the effect of gravity is studied using numerical and experimental approaches. The results showed that an axisymmetric vortex is generated on the disk tip as the disk falls and sheds after impacting the floor. While the effect of this ring vortex on the particles detachment from the floor is small, it has considerable influence on the dispersion of resuspended particles. The simulation results indicated that particles are mainly resuspended from an annular area beneath the disk tip where the generated wall shear is sufficiently high. As particles detachment is mainly controlled by... 

    CO2/H2 separation using a highly permeable polyurethane membrane: Molecular dynamics simulation

    , Article Journal of Molecular Structure ; Volume 1100 , 2015 , Pages 401-414 ; 00222860 (ISSN) Azizi, M ; Mousavi, S. A ; Sharif University of Technology
    Elsevier  2015
    Abstract
    Abstract In this study, Molecular Dynamics (MD) and Grand Canonical Monte Carlo (GCMC) simulations were conducted to investigate the diffusivity, solubility, and permeability of CO2, CO, H2, and H2O in a polyurethane membrane at three different temperatures. The characterization of the simulated structures was carried out using XRD, FFV, Tg and density calculation, and cavity size distribution. The obtained results were within the expectations reported data in the literature based on the experimental approach, indicating the authenticity of approached in this work. The results showed that the highest diffusivity and permeability coefficients were observed for... 

    On the design of graphene oxide nanosheets membranes for water desalination

    , Article Desalination ; Volume 422 , 2017 , Pages 83-90 ; 00119164 (ISSN) Safaei, S ; Tavakoli, R ; Sharif University of Technology
    Elsevier B.V  2017
    Abstract
    According to current researches, graphene oxide (GO) membranes show promising desalination properties due to ease of synthesis, low production cost, and high efficiency. There are several experimental works to study ionic sieving properties of GO membranes. However, it is difficult to characterize atomistic mechanism of water permeation and ion rejection by experimental approaches. On the other hand, there exist a few reports in which the atomistic picture of water permeation across GO membranes is investigated by means of molecular dynamics (MD) simulation. In the present work, in addition to water desalination, the atomic scale mechanism of ion rejection is studied using large scale MD... 

    Reynolds-averaged navier-stokes simulation of hydrofoil effects on hydrodynamic coefficients of a catamaran in forced oscillation

    , Article Proceedings of the Institution of Mechanical Engineers Part M: Journal of Engineering for the Maritime Environment ; Volume 231, Issue 2 , 2017 , Pages 364-383 ; 14750902 (ISSN) Najafi, A ; Seif, M. S ; Sharif University of Technology
    Abstract
    Determination of high-speed crafts' hydrodynamic coefficients will help to analyze the dynamics of these kinds of vessels and the factors affecting their dynamic stabilities. Also, it can be useful and effective in controlling the vessel instabilities. The main purpose of this study is to determine the coefficients of longitudinal motions of a planing catamaran with and without a hydrofoil using Reynolds-averaged Navier-Stokes method to evaluate the foil effects on them. Determination of hydrodynamic coefficients by experimental approach is costly and requires meticulous laboratory equipment; therefore, utilizing the numerical methods and developing a virtual laboratory seem highly... 

    Shared and specific synchronous muscle synergies arisen from optimal feedback control theory

    , Article 2009 4th International IEEE/EMBS Conference on Neural Engineering, NER '09, Antalya, 29 April 2009 through 2 May 2009 ; 2009 , Pages 155-158 ; 9781424420735 (ISBN) Bayati, H. R ; Vahdat, S ; Vosoughi Vahdat, B ; National Institutes of Health, NIH; National Institute of Neurological Disorders and Stroke, NINDS; National Science Foundation, NSF ; Sharif University of Technology
    2009
    Abstract
    In this study the properties of muscle synergies, arising from optimal feedback control are investigated. Three different tasks namely reaching, via-point, and hitting are performed using optimization of corresponding cost functions. Then by applying non-negative matrix factorization method to a dataset of muscle tensions, synchronous muscle synergies are obtained. In this way, different muscle patterns can be generated by linear combination of these basis vectors with non-negative time-varying scaling coefficients. According to our simulations some of obtained muscle synergies are shared between tasks and some of them are specific for one task. This finding is also in agreement with the...