Loading...
Search for: explosives-detection
0.005 seconds

    Bio-inspired nanostructured sensor for the detection of ultralow concentrations of explosives [electronic resource]

    , Article Journal of Angewandte Chemie International Edition ; 29 May 2012, Volume 51, Issue 22, P.5334-5338 Dourandish, M. (Mahdi) ; Simchi, A. (Abdolreza) ; Tamjid Shabestary, Elnaz ; Hartwig, Thomas ; Sharif University of Technology
    Abstract
    TNT: Silicon microcantilevers modified with a three-dimensional layer of vertical titanium dioxide nanotubes can be used in micromechanical sensors with optical signal detection to detect low levels of explosives such as 2,4,6-trinitrotoluene (TNT) in the gas phase, even in the presence of other volatile impurities such as n-heptane and ethanol  

    Terahertz time domain spectroscopy for mixture detection: A quantitative study

    , Article 4th International Conference on Millimeter-Wave and Terahertz Technologies, MMWaTT 2016, 20 December 2016 through 22 December 2016 ; 2017 , Pages 17-19 ; 21570965 (ISSN); 9781509054145 (ISBN) Panahi, O ; Yahyaei, B ; Kouhanestani, M. K ; Mousavi, M ; Darbani, M. R ; Majde, A. E ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2017
    Abstract
    Terahertz spectroscopy is a useful and an efficient method for detection of pure materials and also mixture compounds. In the present study the terahertz spectra of the α-lactose, high explosives RDX and also the binary mixture of mentioned materials has been obtained in the transition mode. The obtained spectra of the pure materials were in a very good agreement with literatures in the range of 0.1 to 1.5 terahertz. The spectra of mixture samples which show the specific fingerprint characters of each component, declare that terahertz spectroscopy can be used effectively for the detection of explosives and chemical compounds even in the mixture samples. © 2016 IEEE  

    A novel motion detection method using 3d discrete wavelet transform

    , Article IEEE Transactions on Circuits and Systems for Video Technology ; Volume 29, Issue 12 , 2019 , Pages 3487-3500 ; 10518215 (ISSN) Yousefi, S ; Manzuri Shalmani, M. T ; Lin, J ; Staring, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2019
    Abstract
    The problem of motion detection has received considerable attention due to the explosive growth of its applications in video analysis and surveillance systems. While the previous approaches can produce good results, the accurate detection of motion remains a challenging task due to the difficulties raised by illumination variations, occlusion, camouflage, sudden motions appearing in burst, dynamic texture, and environmental changes such as weather conditions, sunlight changes during a day, and so on. In this paper, a novel per-pixel motion descriptor is proposed for motion detection in video sequences which outperforms the current methods in the literature particularly in severe scenarios.... 

    Determination and identification of nitroaromatic explosives by a double-emitter sensor array

    , Article Talanta ; Volume 201 , 2019 , Pages 230-236 ; 00399140 (ISSN) Ghasemi, F ; Hormozi Nezhad, M. R ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    Detection of nitroaromatic explosives is of strong concern because of human health, public safety, environment, and military issues. In this study, we present a ratiometric sensor array for detection and discrimination of widely-used nitroaromatics (i.e., 2,4,6-trinitrotoluene (TNT), 2,4,6-trinitrophenol (TNP), and 2,4-dinitrotoluene (DNT)). In the design of sensor elements (SE) we employ blue emissive carbon dots (BCDs) in combination with yellow (SE-A) and red (SE-B) emissive cadmium telluride quantum dots (CdTe QDs). The fluorescence intensity of BCDs, YQDs, and RQDs is quenched by TNT, DNT, and TNP in various degrees. Both TNT and TNP cause the quenching and spectral shift of BCDs (TNT... 

    Selective colorimetric detection of pentaerythritol tetranitrate (PETN) using arginine-mediated aggregation of gold nanoparticles

    , Article Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy ; Volume 228 , 2020 Taefi, Z ; Ghasemi, F ; Hormozi Nezhad, M. R ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    Detection of pentaerythritol tetranitrate (PETN) as an explosive has been of great interest because of public safety and military concerns. Here, we have presented a simple, selective and sensitive colorimetric method for direct detection of PETN. The gold nanoparticles (AuNPs) were first exposed to arginine which has primary amines in its structure. Electron deficient –NH2 groups from arginine could strongly interact with –NO2 groups of PETN as electron donors. Hydrogen bonding happens between the –NO2 group of PETN and –NH2 group of arginine molecules. Therefore, selective aggregation of AuNPs happened because of the donor-acceptor and hydrogen bonding interactions. Due to the aggregation,...