Loading...
Search for: exponential-convergence
0.006 seconds

    Analysis of gyro noise in non-linear attitude estimation using a single vector measurement

    , Article IET Control Theory and Applications ; Volume 6, Issue 14 , 2012 , Pages 2226-2234 ; 17518644 (ISSN) Firoozi, D ; Namvar, M ; Sharif University of Technology
    IET  2012
    Abstract
    This study investigates the effect of noisy measurements of the angular rate in a non-linear attitude estimator for satellites. The attitude estimator uses measurement of a single attitude sensor such as Sun, Earth-horizon, star tracker or magnetometer together with a rate gyro, and guarantees exponential convergence of the attitude estimation error to zero under a no-noise condition. In view of a realistic situation where the presence of noise in gyro measurement is not negligible, this study presents stochastic and deterministic upper bounds for the attitude estimation error resulting from noisy angular rate measurement. A realistic simulation is presented to illustrate the results  

    A novel stable robust adaptive impedance control scheme for ankle prostheses

    , Article 5th RSI International Conference on Robotics and Mechatronics, IcRoM 2017, 25 October 2017 through 27 October 2017 ; 2018 , Pages 63-68 ; 9781538657034 (ISBN) Heidarzadeh, S ; Sharifi, M ; Salarieh, H ; Alasty, A ; Sharif University of Technology
    Abstract
    A stable robust adaptive impedance control strategy is introduced here as a model-based low-level control scheme for active ankle prostheses. The effects of amputee-prosthesis and prosthesis-environment interactions are included in the controller design. An interesting feature of the proposed controller is that only shank and ankle angles and angular velocities, and ground reaction forces are required to implement the control law. In other words, no feedback from amputee-prosthesis interaction forces and moment, global or local positions, and accelerations of amputated place is required. Using a Lyapunov analysis, exponential convergence characteristics of the proposed controller are proven.... 

    Noise analysis in satellite attitude estimation using angular rate and a single vector measurement

    , Article Proceedings of the IEEE Conference on Decision and Control, 12 December 2011 through 15 December 2011 ; December , 2011 , Pages 7476-7481 ; 01912216 (ISSN) ; 9781612848006 (ISBN) Firoozi, D ; Namvar, M ; Sharif University of Technology
    Abstract
    This paper investigates the effect of noisy measurements of the angular rate in a nonlinear attitude estimator for satellites. The attitude estimator uses measurement of a single attitude sensor such as sun, earth horizon, star tracker or magnetometer together with a rate gyro, and guarantees exponential convergence of the attitude estimation error to zero under no noise condition. This paper presents stochastic and deterministic upper bounds for the attitude estimation error affected by the noise in gyro. A realistic simulation is presented to illustrate the results  

    Globally exponential estimation of satellite attitude using a single vector measurement and gyro

    , Article Proceedings of the IEEE Conference on Decision and Control, 15 December 2010 through 17 December 2010, Atlanta, GA ; 2010 , Pages 364-369 ; 01912216 (ISSN) ; 9781424477456 (ISBN) Khosravian, A ; Namvar, M ; Sharif University of Technology
    2010
    Abstract
    This paper presents a dynamically smooth nonlinear observer for satellite attitude determination. The proposed observer uses a 3-axis gyro and a single vector measurement to estimate the attitude of a satellite. The proposed observer preserves orthogonality of the estimated attitude matrix for all time. Almost global and exponential convergence of the estimated attitude to its true value is proven without persistency of excitation conditions. The convergence rate is shown to depend on properties of certain time varying reference vectors expressed in inertial frame. A procedure for maximizing a lower bound of the convergence rate is also presented. Performance of the proposed observer is... 

    Chebyshev collocation spectral lattice Boltzmann method for simulation of low-speed flows

    , Article Physical Review E - Statistical, Nonlinear, and Soft Matter Physics ; Volume 91, Issue 1 , January , 2015 ; 15393755 (ISSN) Hejranfar, K ; Hajihassanpour, M ; Sharif University of Technology
    American Physical Society  2015
    Abstract
    In this study, the Chebyshev collocation spectral lattice Boltzmann method (CCSLBM) is developed and assessed for the computation of low-speed flows. Both steady and unsteady flows are considered here. The discrete Boltzmann equation with the Bhatnagar-Gross-Krook approximation based on the pressure distribution function is considered and the space discretization is performed by the Chebyshev collocation spectral method to achieve a highly accurate flow solver. To provide accurate unsteady solutions, the time integration of the temporal term in the lattice Boltzmann equation is made by the fourth-order Runge-Kutta scheme. To achieve numerical stability and accuracy, physical boundary... 

    Concurrent learning based finite-time parameter estimation in adaptive control of uncertain switched nonlinear systems

    , Article Journal of Control, Automation and Electrical Systems ; Volume 28, Issue 4 , 2017 , Pages 444-456 ; 21953880 (ISSN) Nazari Goldar, S ; Yazdani, M ; Sinafar, B ; Sharif University of Technology
    Springer New York LLC  2017
    Abstract
    In this paper, We develop concurrent learning adaptive controller, which uses recorded and current data concurrently for adaptation, to model reference adaptive control (MRAC) of uncertain switched nonlinear systems. In standard MRAC architecture for switched systems, the adaptive update laws are derived based on the gradient descent scheme, but here we developed two novel parameter estimation schemes by using modification terms in adaptation laws in which recorded data are used simultaneously with current data and a triggering time is considered in which a sufficient condition on the linear independence of the recorded data is obtained to guarantee the exponential convergence of tracking... 

    Concurrent learning based finite time parameter estimation in adaptive control of uncertain switched systems

    , Article 4th RSI International Conference on Robotics and Mechatronics, ICRoM 2016, 26 October 2016 through 28 October 2016 ; 2017 , Pages 258-265 ; 9781509032228 (ISBN) Yazdani, M ; Nazari, S ; Sinafar, B ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2017
    Abstract
    In this paper, We propose concurrent learning adaptive controller, which uses recorded and current data concurrently for adaptation, to model reference adaptive control (MRAC) of uncertain switched systems. In standard MRAC architecture for switched systems, the adaptive update laws are derived based on the gradient descent scheme, but here we developed two novel parameter estimation schemes by using modification terms in adaptation laws in which recorded data is used simultaneously with current data and a triggering time is considered in which a sufficient condition on the linear independence of the recorded data is obtained to guarantee the exponential convergence of tracking error and...