Loading...
Search for: extended-hamilton-principles
0.005 seconds

    Stability Analysis of a Beam Subjected to Axial, Bending and Torsional Follower Loads on the Tip

    , M.Sc. Thesis Sharif University of Technology Nejati, Alireza (Author) ; Dehghani Firouzabadi, Roohollah (Supervisor)
    Abstract
    Because the structural stability is directly related with structural damage, it is considered one of the most important issues in the industry. One of the applied cases in the stability issue discuss about the stability of the beam under follower loads. Follower loads obtained from aerodynamic pressure, rocket’s thrust, dry friction of the rotating disk, drilling and etc. Because the follower loads are always perpendicular to the beam cross section, thus with changing the angle of their location, their directions are changed. Spatial dependence makes a non-conservative and dynamic problem. So these loads causes dynamic instability that say flutter. In this study, the stability of a... 

    The influence of the intermolecular surface forces on the static deflection and pull-in instability of the micro/nano cantilever gyroscopes

    , Article Composites Part B: Engineering ; Vol. 56, issue , January , 2014 , p. 336-343 Mojahedi, M ; Ahmadian, M. T ; Firoozbakhsh, K ; Sharif University of Technology
    Abstract
    In this paper, the effects of van der Waals and Casimir forces on the static deflection and pull-in instability of a micro/nano cantilever gyroscope with proof mass at its end are investigated. The micro/nano gyroscope is subjected to coupled bending motions which are related by base rotation and nonlinearities due to the geometry and the inertial terms. It is actuated and detected by capacitance plates which are placed on the proof mass. The extended Hamilton principle is used to find the equations governing the static behavior of the clamp-free micro/nano gyroscopes under electrostatic, Casimir and van der Waals forces. The equations of static motion are discritized by Galerkin's... 

    Oscillatory behavior of an electrostatically actuated microcantilever gyroscope

    , Article International Journal of Structural Stability and Dynamics ; Volume 13, Issue 6 , 2013 ; 02194554 (ISSN) Mojahedi, M ; Ahmadian, M. T ; Firoozbakhsh, K ; Sharif University of Technology
    2013
    Abstract
    This paper is concerned with the study of the oscillatory behavior of an electrostatically actuated microcantilever gyroscope with a proof mass attached to its free end. In mathematical modeling, the effects of different nonlinearities such as electrostatic forces, fringing field, inertial terms and geometric nonlinearities are considered. The microgyroscope is subjected to bending oscillations around the static deflection coupled with base rotation. The primary oscillation is generated in drive direction of the microgyroscope by a pair of DC and AC voltages on the tip mass. The secondary oscillation occurring in the sense direction is induced by the Coriolis coupling caused by the input... 

    Static and dynamic analysis of a clamp-clamp nano-beam under electrostatic actuation and detection considering intermolecular forces

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE) ; Volume 10 , 2013 ; 9780791856390 (ISBN) Mojahedi, M ; Barari, A ; Firoozbakhsh, K ; Ahmadian, M. T ; ASME ; Sharif University of Technology
    American Society of Mechanical Engineers (ASME)  2013
    Abstract
    Micro/nano gyroscopes which can measure angular rate or angle are types of merging gyroscope technology with MEMS/NEMS technology. They have extensively used in many fields of engineering, such as automotive, aerospace, robotics and consumer electronics. There are many studies of a variety of gyroscopes with various drive and detect methods and different resonator structures in last years. In case of electrostatically actuated and detected beam micro/nano-gyroscopes, DC voltages are applied in driving and sensing directions and AC voltage is utilized in driving direction in order to excite drive oscillation. The intermolecular surface forces are especially significant when the gyroscopes are... 

    Oscillatory behavior of the nonlinear clamped-free beam microgyroscopes under electrostatic actuation and detection

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE) ; Volume 10 , 2013 ; 9780791856390 (ISBN) Mojahedi, M ; Firoozbakhsh, K ; Ahmadian, M. T ; Barari, A ; ASME ; Sharif University of Technology
    American Society of Mechanical Engineers (ASME)  2013
    Abstract
    Vibratory micromachined gyroscopes use suspending mechanical parts to measure rotation. They have no gyratory component that require bearings, and for this reason they can be easily miniaturized and batch production using micromachining methods. They operate based on the energy interchange between two modes of structural vibration. The objective of this paper is to study the oscillatory behavior of an electrostatically actuated vibrating microcantilever gyroscope with proof mass at its end. In the modelling, the effects of different nonlinearities, fringing field and base rotation are considered. The microgyroscope is subjected to coupled bending oscillations around the static deflection... 

    The oscillatory behavior, static and dynamic analyses of a micro/nano gyroscope considering geometric nonlinearities and intermolecular forces

    , Article Acta Mechanica Sinica/Lixue Xuebao ; Volume 29, Issue 6 , 2013 , Pages 851-863 ; 05677718 (ISSN) Mojahedi, M ; Ahmadian, M. T ; Firoozbakhsh, K ; Sharif University of Technology
    2013
    Abstract
    The nonlinear dynamic and static deflection of a micro/nano gyroscope under DC voltages and base rotation are investigated. The gyroscope undertakes two coupled bending motions along the drive and sense directions and subjected to electrostatic actuations and intermolecular forces. The nonlinear governing equations of motion for the system with the effect of electrostatic force, intermolecular tractions and base rotation are derived using extended Hamilton principle. Under constant voltage, the gyroscope finds the preformed shape. First, the deflection of the micro/nano gyroscope under electrostatic forces is obtained by static and dynamic analyses. Furthermore, the static and dynamic...