Loading...
Search for:
external-electric-field
0.009 seconds
Soap-film flow induced by electric fields in asymmetric frames
, Article Physical Review E ; Volume 97, Issue 4 , 2018 ; 24700045 (ISSN) ; Nasiri, M ; Soltanmohammadi, N ; Shirsavar, R ; Ramos, A ; Amjadi, A ; Sharif University of Technology
American Physical Society
2018
Abstract
Net fluid flow of soap films induced by (ac or dc) electric fields in asymmetric frames is presented. Previous experiments of controllable soap film flow required the simultaneous use of an electrical current passing through the film and an external electric field or the use of nonuniform ac electric fields. Here a single voltage difference generates both the electrical current going through the film and the electric field that actuates on the charge induced on the film. The film is set into global motion due to the broken symmetry that appears by the use of asymmetric frames. If symmetric frames are used, the film flow is not steady but time dependent and irregular. Finally, we study...
Numerical Simulation of Non-Newtonian Droplet Formation under External Electric Field in a Microfluidic Device
, M.Sc. Thesis Sharif University of Technology ; Moosavi, Ali (Supervisor) ; Kazemzadeh Hannani, Siamak (Supervisor)
Abstract
Droplet formation and breakup processes are one of the important steps in many microfluidic devices with a wide range of biological and chemical applications. The purpose of this study is numerical simulation of non-Newtonian droplet formation under the influence of electric field in a microfluidic system. The innovation aspect of this project is the use of non-Newtonian fluid in this process, which, despite many applications in real issues, has been less studied, and in most of the previous researches, Newtonian fluid assumption has been used to simplify the solving. Also, simultaneously, the effects of an external electric field on this process were also studied. Carboxymethyl cellulose...
Liquid soap film generates electricity: a suspended liquid film rotating in an external electric field as an electric generator
, Article Microfluidics and Nanofluidics ; Vol. 18, issue. 1 , Apr , 2014 , pp. 141-147 ; ISSN:16134982 ; Feiz, M. S ; Namin, R. M ; Sharif University of Technology
Abstract
We have observed that a rotating liquid soap film generates electricity when placed between two non-contact electrodes with a sufficiently large potential difference. In our experiments, suspended liquid film (water + soap film) is formed on the surface of a circular frame, which is forced to rotate in the x−y horizontal plane by a motor. This system is located at the center of two capacitor-like vertical plates to apply an external electric voltage difference in the x-direction. The produced electric current is collected from the liquid film using two conducting electrodes that are separated in the y-direction. We previously reported that a liquid film in an external electric field rotates...
LBM simulation of electro-osmotic flow (EOF) in nano/micro scales porous media with an inclusive parameters study
, Article ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE) ; Vol. 7 , November , 2014 ; ISBN: 9780791849545 ; Lee, E. S ; Salimi, M. R ; Sharif University of Technology
Abstract
In this paper, we present our results about simulation of 2D-EOF in Nano/Micro scales porous media using lattice Boltzmann method (LBM) in micro-channel for EOF. The high efficient numerical code use strongly high nonlinear Poisson Boltzmann equation to predicate behavior of EOF in complex geometry. The results are developed with precisely investigation of several effective parameters on permeability of EOF, such as geometry (channel height and number and location of charge), external electric field, thickness of Debye length (ionic concentration), and zeta potential. Our results are in excellent agreement with available analytical results. Our results show that for certain external electric...
Semi-conducting carbon nanotube as variable capacitor
, Article Physica E: Low-Dimensional Systems and Nanostructures ; Volume 54 , 2013 , Pages 9-14 ; 13869477 (ISSN) ; Naghdabadi, R ; Sharif University of Technology
2013
Abstract
This paper proposes a novel, one-part, variable capacitor, using semi-conducting carbon nanotube (CNT). This variable capacitor works based on the change in the electronic structure of CNTs under applied voltage and deformations. Positive and negative charges are stored at both ends of a non-zero band gap nanotube which works as metallic electrodes in parallel plate capacitors. Also the neutral strip in the middle acts as the dielectric part of a conventional capacitor under the influence of an external electric field. Mechanical strains on carbon nanotube change its band gap energy and thus the length of neutral strip and charged regions. The lengths of these parts are primarily dependent...
Rotational regimes of freely suspended liquid crystal films under electric current in presence of an external electric field
, Article Microfluidics and Nanofluidics ; Volume 13, Issue 1 , 2012 , Pages 83-89 ; 16134982 (ISSN) ; Amjadi, A ; Ejtehadi, M. R ; Mozaffari, M. R ; Feiz, M. S ; Sharif University of Technology
2012
Abstract
The electrohydrodynamic (EHD) vortices produced by an electric current in freely suspended liquid crystal (LC) films of N-(4-methoxybenzylidene)-4- butylaniline (MBBA), convert to a pure rotation in the presence of external electric field (E ext) perpendicular to the current direction. Here, the direction and strength of the rotation are precisely under control by our self-made device called "liquid-film motor". In this paper, we present experimental observations of the EHD fluid flow when external electric field varies from zero to a value in which pure rotation on the liquid crystal (LC) film is observed. We also show experimentally that the presence of external electric field causes a...
Cellular model of electroporated tissue for ultrasound RF data analysis
, Article 2009 International Conference on Advances in Computational Tools for Engineering Applications, ACTEA 2009, Beirut, 15 July 2009 through 17 July 2009 ; 2009 , Pages 652-655 ; 9781424438341 (ISBN) ; Zahedi, E ; National Instruments; MSC Software; Pro Mech ; Sharif University of Technology
2009
Abstract
Electroporation is permeabilization of the cell membrane, caused by an external electric field. Because of minimal thermal effects and minimal disturbance caused to tissue vasculature electroporation is becoming one of the methods of choice in tumor therapy. There has been no report indicating that reversible electroporation can be detected by ultrasound. In this work a cellular model for monitoring the electroporation process b; ultrasound RF signals is proposed. The density of aqueous pores with different sizes was found by applying the asymptotic model of electroporation and Smoluchowski equation. The cellular model was send to an ultrasound simulation program where pores were modeled by...
Polymer dispersed liquid crystal-mediated active plasmonic mode with microsecond response time
, Article Optics Letters ; Volume 44, Issue 5 , 2019 , Pages 1088-1091 ; 01469592 (ISSN) ; Mohajerani, E ; Neyts, K ; Mohammadimasoudi, M ; Sharif University of Technology
OSA - The Optical Society
2019
Abstract
Active plasmonics combined with liquid crystal (LC) has found many applications in nanophotonics. In this Letter, we propose a fast response active plasmonic device based on the interplay of the plasmonic spectrum and Fabry–Perot (FP) modes. The plasmonic spectrum and FP modes are excited in a layer of gold nanoparticle (NP) islands and an LC microcavity, respectively. The FP mode splits the extinction spectrum of the NP to narrow bands, which are named hybrid modes (HMs). Due to multiple reflections of photons inside the cavity, the extinction coefficient is enhanced compared to a bare NP layer. An external electric field shifts the HM leading to a significant increase in the figure of...
Shooting at the nanoscale: Collection and acceleration of nanowires with an external electric field
, Article Applied Physics Letters ; Volume 114, Issue 1 , 2019 ; 00036951 (ISSN) ; Esfandiar, A ; Moshfegh, A. Z ; Sharif University of Technology
American Institute of Physics Inc
2019
Abstract
We report an approach for collecting, charging, and exceedingly fast motion of silver nanowires (Ag NWs) using an external static electric field. With a proper choice of suspension medium, dispersed Ag NWs can be efficiently driven to align and accumulate vertically on the edges of two parallel gold microelectrodes on a glass substrate surface by dielectrophoresis. Then, at sufficiently high electric fields (> 2.0 × 10 5 V/m), these NWs break at the electrode contact point while carrying some net charge. Afterwards, they immediately accelerate in the field direction and, despite an extremely low Reynolds number for the motion of NWs in viscous liquids, move with high speeds (> 25 mm/s)...
How do adsorbent orientation and direction of external electric field affect the charge-transfer surface-enhanced raman spectra?
, Article Journal of Physical Chemistry C ; Volume 125, Issue 24 , 2021 , Pages 13382-13390 ; 19327447 (ISSN) ; Jamshidi, Z ; Sharif University of Technology
American Chemical Society
2021
Abstract
Surface-enhanced Raman spectroscopy is a highly sensitive phenomenon and a powerful fingerprint detection tool that reflects the small changes in polarizability on the pattern and intensity of Raman signals. The SERS enhancement signals elucidate with the surface-selection rules. In this regard, molecular configuration and adsorption orientation on the surface, in addition to the direction of external electric field, can lead to different patterns of SERS spectra. To evaluate how the variation of these features influences the pattern and reproducibility of the spectra, the chemical charge-transfer SERS spectra for pyridine on silver clusters are calculated for different field directions,...
Electrokinetic mixing and displacement of charged droplets in hydrogels
, Article Transport in Porous Media ; Vol. 104, Issue. 3 , Jun , 2014 , pp. 469-499 ; ISSN: 01693913 ; Sharif University of Technology
Abstract
Mixing in droplets is an essential task in a variety of microfluidic systems. Inspired by electrokinetic mixing, electric field-induced hydrodynamic flow inside a charged droplet embedded in an unbounded polyelectrolyte hydrogel is investigated theoretically. In this study, the polyelectrolyte hydrogel is modeled as a soft, and electrically charged porous solid saturated with a salted Newtonian fluid, and the droplet is considered an incompressible Newtonian fluid. The droplet-hydrogel interface is modeled as a surface, which is located at the plane of shear, with the electrostatic potential ζ. The fluid inside the droplet attains a finite velocity owing to hydrodynamic coupling with the...
An ultrasensitive label free human papilloma virus DNA biosensor using gold nanotubes based on nanoporous polycarbonate in electrical alignment
, Article Analytica Chimica Acta ; 2018 ; 00032670 (ISSN) ; Ghorbani, M ; Sasanpour, P ; Karimizefreh, A ; Sharif University of Technology
Elsevier B.V
2018
Abstract
An impedimetric human papilloma virus (HPV) DNA biosensor based on gold nanotubes (AuNTs) in label free detection was materialized. The AuNTs decorated nanoporous polycarbonate (AuNTs-PC) template as biosensor electrode was fabricated by electrodeposition method. The single strand DNA (ss-DNA) probe was covalently immobilized onto the AuNTs-PC electrode. The hybridization of target sequences with the ss-DNA probe was observed by the electrochemical impedance spectroscopy (EIS). The biosensor showed high selectivity and could differentiate between the complementary, mismatch and non-complementary DNA sequences. The EIS measurements were matched to Randle's equivalent circuit. The...
Shear-thinning droplet formation inside a microfluidic T-junction under an electric field
, Article Acta Mechanica ; Volume 232, Issue 7 , 2021 , Pages 2535-2554 ; 00015970 (ISSN) ; Honarmand, M ; Dizani, M ; Moosavi, A ; Kazemzadeh Hannani, S ; Sharif University of Technology
Springer
2021
Abstract
Researchers usually simplify their simulations by considering the Newtonian fluid assumption in microfluidic devices. However, it is essential to study the behavior of real non-Newtonian fluids in such systems. Moreover, using the external electric or magnetic fields in these systems can be very beneficial for manipulating the droplet size. This study considers the simulation of the process of non-Newtonian droplets’ formation under the influence of an external electric field. The novelty of this study is the use of a shear-thinning fluid as the droplet phase in this process, which has been less studied despite its numerous applications. The effects of an external electric field on this...
An ultrasensitive label free human papilloma virus DNA biosensor using gold nanotubes based on nanoporous polycarbonate in electrical alignment
, Article Analytica Chimica Acta ; Volume 1048 , 2019 , Pages 31-41 ; 00032670 (ISSN) ; Ghorbani, M ; Sasanpour, P ; Karimizefreh, A ; Sharif University of Technology
Elsevier B.V
2019
Abstract
An impedimetric human papilloma virus (HPV) DNA biosensor based on gold nanotubes (AuNTs) in label free detection was materialized. The AuNTs decorated nanoporous polycarbonate (AuNTs-PC) template as biosensor electrode was fabricated by electrodeposition method. The single strand DNA (ss-DNA) probe was covalently immobilized onto the AuNTs-PC electrode. The hybridization of target sequences with the ss-DNA probe was observed by the electrochemical impedance spectroscopy (EIS). The biosensor showed high selectivity and could differentiate between the complementary, mismatch and non-complementary DNA sequences. The EIS measurements were matched to Randle's equivalent circuit. The...