Loading...
Search for: external-load
0.005 seconds

    Metabolic load comparison between the quarters of a game in elite male basketball players using sport metabolomics

    , Article European Journal of Sport Science ; 2020 Khoramipour, K ; Gaeini, A. A ; Shirzad, E ; Gilany, K ; Chashniam, S ; Sandbakk, Ø ; Sharif University of Technology
    Taylor and Francis Ltd  2020
    Abstract
    Purpose: A basketball match is characterized by intermittent high-intensity activities, thereby relying extensively on both aerobic and anaerobic metabolic pathways. Here, we aimed to compare the metabolic fluctuations between the four 10-min quarters of high-level basketball games using metabolomics analyses. Methods: 70 male basketball players with at least 3 years of experience in the Iran national top-league participated. Before and after each quarter, saliva samples were taken for subsequent untargeted metabolomics analyses, where Principal component analysis (PCA) and Partial least squares-discriminant analysis (PLS-DA) were employed for statistical analysis. Results: Quarters 1 and 3... 

    Online prediction of plate deformations under external forces using neural networks

    , Article 2006 ASME International Mechanical Engineering Congress and Exposition, IMECE2006, Chicago, IL, 5 November 2006 through 10 November 2006 ; 2006 ; 10716947 (ISSN); 0791837904 (ISBN); 9780791837900 (ISBN) Ahmadian, M. T ; Mobini, A ; Sharif University of Technology
    American Society of Mechanical Engineers (ASME)  2006
    Abstract
    Recently online prediction of plate deformations in modern systems have been considered by many researchers, common standard methods are highly time consuming and powerful processors are needed for online computation of deformations. Artificial neural networks have capability to develop complex, nonlinear functional relationships between input and output patterns based on limited data. A good trained network could predict output data very fast with acceptable accuracy. This paper describes the application of an artificial neural network to identify deformation pattern of a four-side clamped plate under external loads. In this paper the distributed loads are approximated by a set of... 

    Dynamic green function for response of timoshenko beam with arbitrary boundary conditions

    , Article Mechanics Based Design of Structures and Machines ; Volume 42, Issue 1 , 2 January , 2014 , Pages 97-110 ; ISSN: 15397734 Ghannadiasl, A ; Mofid, M ; Sharif University of Technology
    Abstract
    This paper presents the dynamic response of uniform Timoshenko beams with arbitrary boundary conditions using Dynamic Green Function. An exact and direct modeling technique is stated to model beam structures with arbitrary boundary conditions subjected to the external load that is an arbitrary function of time t and coordinate x and the concentrated moving load. This technique is based on the Dynamic Green Function. The effect of different boundary conditions, load, and other parameters is assessed. Finally, some numerical examples are shown to illustrate the efficiency and simplicity of the new formulation based on the Dynamic Green Function  

    Stability analysis of nanocones under external pressure and axial compression using a nonlocal shell model

    , Article Physica E: Low-Dimensional Systems and Nanostructures ; Volume 44, Issue 9 , June , 2012 , Pages 1832-1837 ; 13869477 (ISSN) Firouz Abadi, R. D ; Fotouhi, M. M ; Haddadpour, H ; Sharif University of Technology
    2012
    Abstract
    A nonlocal continuum shell model is developed to study the stability of nanocones under combined loading: external pressure and compression force. The nonlinear governing equations of motion of nanocone are obtained using Hamiltons principle and the external loads are considered as prestress. Based on Eringens nonlocal elasticity theory the small-scale effect is accounted in the governing equations of motion. To obtain the critical loads, the equations are solved using Galerkin technique and the effect of small-scale parameter and geometry on the stability of nanocone is studied  

    Contact of an asymmetrical rounded apex wedge with a half plane

    , Article International Journal of Engineering Science ; Volume 50, Issue 1 , January , 2012 , Pages 192-197 ; 00207225 (ISSN) Adibnazari, S ; Sharafbafi, F ; Ghanati, P ; Sharif University of Technology
    Abstract
    Two-dimensional elastic contact problem of an asymmetrical rounded apex wedge with a half plane is considered and an analytical solution is presented for vertical and horizontal external loading in the presence of coulomb friction. The pressure and shear distribution functions are found in closed form under partial slip condition. Further by utilizing a new relation Muskhelishvili's potential function is obtained and results are analyzed. Designing better cutting tools, selecting fretting fatigue test pads and deeper lap joint analyzing are several practical applications of the outcomes  

    Workspace analysis of a three dof cable-driven mechanism

    , Article Journal of Mechanisms and Robotics ; Volume 1, Issue 4 , 2009 , Pages 1-7 ; 19424302 (ISSN) Alikhani, A. R ; Behzadipour, S ; Sadough Vanini, A ; Alasty, A ; Sharif University of Technology
    2009
    Abstract
    A cable-driven mechanism based on the idea of BetaBot (2005, "A New Cable-Based Parallel Robot With Three Degrees of Freedom, " Multibody Syst. Dyn., 13, pp. 371-383) is analyzed and geometrical description of its workspace boundary is found. In this mechanism, the cable arrangement eliminates the rotational motions leaving the moving platform with three translational motions. The mechanism has potentials for large scale manipulation and robotics in harsh environments. A detailed analysis of the tensionable workspace of the mechanism is presented. The mechanism, in a tensionable position, can develop tensile forces in all cables to maintain its rigidity under arbitrary external loading. A... 

    Elevation and orientation of external loads influence trunk neuromuscular response and spinal forces despite identical moments at the L5-S1 level

    , Article Journal of Biomechanics ; Vol. 47, issue. 12 , September , 2014 , p. 3035-3042 Ouaaid, Z. E ; Shirazi-Adl, A ; Plamondon, A ; Arjmand, N ; Sharif University of Technology
    Abstract
    A wide range of loading conditions involving external forces with varying magnitudes, orientations and locations are encountered in daily activities. Here we computed the effect on trunk biomechanics of changes in force location (two levels) and orientation (5 values) in 4 subjects in upright standing while maintaining identical external moment of 15. Nm, 30. N. m or 45. Nm at the L5-S1. Driven by measured kinematics and gravity/external loads, the finite element models yielded substantially different trunk neuromuscular response with moderate alterations (up to 24% under 45 Nm moment) in spinal loads as the load orientation varied. Under identical moments, compression and shear forces at... 

    Deformation modeling of an FGM plate under external force

    , Article Advanced Materials Research ; Sharif University of Technology , Volume 622 , 2013 , Pages 246-253 ; 10226680 (ISSN) ; 9783037855638 (ISBN) Mortazavi Moghaddam, A. R ; Ahmadian, M. T ; Sarkeshi, M ; Kheradpisheh, A ; Sharif University of Technology
    2013
    Abstract
    Deformation modeling of an infinite plate of functionally graded materials (FGMs) loaded by normal force to the plate surface is studied. The material properties of FGM plate are assumed to be graded in the thickness direction according to a simple power-law distribution in terms of the volume fractions of the constituents. The governing equations are based on stress-strain relation and the equilibrium force equation. Keeping generality, FGM plate has been assumed as a multilayer with linear material property in each layer while arbitrary exponential material property through the thickness. A plate made of Aluminum and Alumina is considered as an example to illustrate the effects of the... 

    Effects of surface residual stress and surface elasticity on the overall yield surfaces of nanoporous materials with cylindrical nanovoids

    , Article Mechanics of Materials ; Volume 51 , 2012 , Pages 74-87 ; 01676636 (ISSN) Moshtaghin, A. F ; Naghdabadi, R ; Asghari, M ; Sharif University of Technology
    Elsevier  2012
    Abstract
    Mechanical properties of a material near the surfaces and interfaces are different from those of the same material far from the surfaces/interfaces. The effect of this difference on the effective mechanical properties of heterogeneous materials becomes significant when the size of inhomogeneities is at the scale of nanometers. In this article, within a micromechanical framework, the effects of surface residual stress and surface elasticity are taken into account to obtain a macroscopic size-dependent yield function for nanoporous materials containing aligned cylindrical nanovoids. Based on the modified Hill's condition, the strains are decomposed into two parts, a part due to the external... 

    A predictive voltage controller for stabilizing single fuel cell convertor

    , Article 4th IEEE Electrical Power and Energy Conference: "Sustainable Energy for an Intelligent Grid", EPEC 2010, Halifax, NS, 25 August 2010 through 27 August 2010 ; 2010 ; 9781424481880 (ISBN) Masoumzadeh, A ; Nasirian, V. R ; Roshandel, R ; Zolghadri, M. R ; Fathi, A. H ; Noroozi, N ; Sharif University of Technology
    2010
    Abstract
    Serious and challengeable role in markets of low power supplies for cellular phones and other small portable devices is expected for single fuel cell in future. Single fuel cell voltage level is extremely low in comparison with its output current. According to the extremely low level of the voltage, a suitable dc/dc boost converter must be used for increasing the voltage. In this paper, a model for a single fuel cell is presented and the effect of external load variation and changing of reactant pressure on cell performance is investigated. Moreover, a predictive voltage controller for boost convertor of PEM fuel cell is presented, simulated and validated using MATLAB/Simulink. The results... 

    Structural health monitoring of buried pipelines under static dislocation and vibration

    , Article Proceedings of 2010 IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications, MESA 2010, 15 July 2010 through 17 July 2010 ; 2010 , Pages 325-329 ; 9781424471010 (ISBN) Dezfouli, S ; Zabihollah, A ; Sharif University of Technology
    Abstract
    Buried pipe lines are an efficient way of transporting of water, sewage, oil, and gas resources in all over the world. Since the buried pipe lines are exposed to many unexpected conditions, such as landslides, corrosion, fatigue, earthquakes, material flaws or even intentional damaging, so the inspection requirements lead to adoption of new method of maintenance, protection and conserving. This report aims to improve the trustworthiness, reliability, yet economical technologies for monitoring of behavior and manner of buried pipe lines during operation and assessing the risk of pipe lines failure. Distributed sensors (piezoelectric) are surface designed and embedded to investigate the... 

    The effect of fuel cell operational conditions on the water content distribution in the polymer electrolyte membrane

    , Article Renewable Energy ; Volume 36, Issue 12 , December , 2011 , Pages 3319-3331 ; 09601481 (ISSN) Tavakoli, B ; Roshandel, R ; Sharif University of Technology
    2011
    Abstract
    Models play an important role in fuel cell design and development. One of the critical problems to overcome in the proton exchange membrane (PEM) fuel cells is the water management. In this work a steady state, two-dimensional, isothermal model in a single PEM fuel cell using individual computational fluid dynamics code was presented. Special attention was devoted to the water transport through the membrane which is assumed to be combined effect of diffusion, electro-osmotic drag and convection. The effect of current density variation distribution on the water content (λ) in membrane/electrode assembly (MEA) was determined. In this work the membrane heat conductivity is considered as a... 

    Neuromuscular control of the point to point and oscillatory movements of a sagittal arm with the actor-critic reinforcement learning method

    , Article Computer Methods in Biomechanics and Biomedical Engineering ; Volume 8, Issue 2 , 2005 , Pages 103-113 ; 10255842 (ISSN) Golkhou, V ; Parnianpour, M ; Lucas, C ; Sharif University of Technology
    2005
    Abstract
    In this study, we have used a single link system with a pair of muscles that are excited with alpha and gamma signals to achieve both point to point and oscillatory movements with variable amplitude and frequency. The system is highly nonlinear in all its physical and physiological attributes. The major physiological characteristics of this system are simultaneous activation of a pair of nonlinear musclelike- actuators for control purposes, existence of nonlinear spindle-like sensors and Golgi tendon organlike sensor, actions of gravity and external loading. Transmission delays are included in the afferent and efferent neural paths to account for a more accurate representation of the reflex... 

    Comparisons of lumbar spine loads and kinematics in healthy and non-specific low back pain individuals during unstable lifting activities

    , Article Journal of Biomechanics ; Volume 144 , 2022 ; 00219290 (ISSN) Heidari, E ; Arjmand, N ; Kahrizi, S ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Evaluation of spinal loads in patients with low back pain (LBP) is essential to prevent further lumbar disorders. Many studies have investigated the relationship between lifting task variables and lumbar spine loads during manual lifting activities. The nature of the external load (stable versus unstable loads) is an important variable that has received less attention. Therefore, the present study aimed to measure trunk kinematics and estimate compressive-shear loads on the lumbar spine under lifting a 120 N stable load and 120 ± 13.63 N sensual unstable load in 16 healthy and 16 non-specific LBP individuals during lifting activities. The maximal lumbar loads were estimated using a...