Loading...
Search for:
extracellular-matrices
0.005 seconds
Smart polymeric hydrogels for cartilage tissue engineering: A review on the chemistry and biological functions
, Article Biomacromolecules ; Volume 17, Issue 11 , 2016 , Pages 3441-3463 ; 15257797 (ISSN) ; Abdorahim, M ; Simchi, A ; Sharif University of Technology
American Chemical Society
Abstract
Stimuli responsive hydrogels (SRHs) are attractive bioscaffolds for tissue engineering. The structural similarity of SRHs to the extracellular matrix (ECM) of many tissues offers great advantages for a minimally invasive tissue repair. Among various potential applications of SRHs, cartilage regeneration has attracted significant attention. The repair of cartilage damage is challenging in orthopedics owing to its low repair capacity. Recent advances include development of injectable hydrogels to minimize invasive surgery with nanostructured features and rapid stimuli-responsive characteristics. Nanostructured SRHs with more structural similarity to natural ECM up-regulate cell-material...
Gellan gel comprising short PVDF based-nanofibers: The effect of piezoelectric nanofiber on the mechanical and electrical behavior
, Article Materials Today Communications ; Volume 26 , 2021 ; 23524928 (ISSN) ; Ramazani S. A., A ; H-Shirazi, F ; Hassanzadeh Nemati, N ; Sharif University of Technology
Elsevier Ltd
2021
Abstract
Gel-fiber structure with the potential of extracellular matrix (ECM) mimics can be introduced as a suitable candidate for bioengineering applications. In this study, piezoelectric gellan gel-fiber was prepared with incorporating poly(vinylidenefluoride) (PVDF)/glass-flake in the gellan matrix. Glass-flake nanoparticles were modified with silane group, PVDF/glass-flake nanofibers were synthesized and short-strand nanofibers were fabricated using the mechanical homogenizer method. Brunauer–Emmett–Teller (BET), Fourier-transform infrared spectroscopy (FTIR), and Thermogravimetric analysis (TGA) analyses were used for surface modification study, and scanning electron microscopy (SEM),...
Alginate/cartilage extracellular matrix-based injectable interpenetrating polymer network hydrogel for cartilage tissue engineering
, Article Journal of Biomaterials Applications ; Volume 36, Issue 5 , 2021 , Pages 803-817 ; 08853282 (ISSN) ; Mashayekhan, S ; Pazooki, H ; Mohsenifard, S ; Baniasadi, H ; Sharif University of Technology
SAGE Publications Ltd
2021
Abstract
In the present study, alginate/cartilage extracellular matrix (ECM)-based injectable hydrogel was developed incorporated with silk fibroin nanofibers (SFN) for cartilage tissue engineering. The in situ forming hydrogels were composed of different ionic crosslinked alginate concentrations with 1% w/v enzymatically crosslinked phenolized cartilage ECM, resulting in an interpenetrating polymer network (IPN). The response surface methodology (RSM) approach was applied to optimize IPN hydrogel's mechanical properties by varying alginate and SFN concentrations. The results demonstrated that upon increasing the alginate concentration, the compression modulus improved. The SFN concentration was...
Mechanical reinforcement of urinary bladder matrix by electrospun polycaprolactone nanofibers
, Article Scientia Iranica ; Volume 24, Issue 6 , 2017 , Pages 3476-3480 ; 10263098 (ISSN) ; Rajabi Zeleti, S ; Naji, M ; Ghanian, M. H ; Baharvand, H ; Sharif University of Technology
Abstract
For a successful repair and reconstruction of bladder tissue, fabrication of scaffolds with proper biochemical and biomechanical characteristics is necessary. Decellularized bladder tissue has been proposed in previous studies as a gold standard material for scaffold fabrication. However, weak mechanical properties of such a load-bearing tissue has remained a challenge. Incorporation of both biological and synthetic materials has been known as an effective strategy for improving mechanical and biological properties of the scaffolds. In the present work, a simple process was developed to fabricate hybrid hydrogel scaffolds with a biomimetic architecture from the natural urinary bladder...
Fully-coupled mathematical modeling of actomyosin-cytosolic two-phase flow in a highly deformable moving Keratocyte cell
, Article Journal of Biomechanics ; 2017 ; 00219290 (ISSN) ; Firoozabadi, B ; Saidi, M. S ; Sharif University of Technology
Elsevier Ltd
2017
Abstract
Interaction between intracellular dynamics and extracellular matrix (ECM) generally occurred into very thin fragment of moving cell, namely lamellipodia, enables all movable cells to crawl on ECM. In fast-moving cells such as fish Keratocytes, Lamellipodia including most cell area finds a fan-like shape during migration, with a variety of aspect ratio function of fish type. In this work, our purpose is to present a novel and more complete two-dimensional continuum mathematical model of actomyosin-cytosolic two-phase flow of a self-deforming Keratocyte with circular spreaded to steady fan-like shape. In the new approach, in addition to the two-phase flow of the F-actin and cytosol, the...
A high-performance polydimethylsiloxane electrospun membrane for cell culture in lab-on-a-chip
, Article Biomicrofluidics ; Volume 12, Issue 2 , April , 2018 ; 19321058 (ISSN) ; Saidi, M. S ; Kashaninejad, N ; Nguyen, N. T ; Sharif University of Technology
American Institute of Physics Inc
2018
Abstract
Thin porous membranes are important components in a microfluidic device, serving as separators, filters, and scaffolds for cell culture. However, the fabrication and the integration of these membranes possess many challenges, which restrict their widespread applications. This paper reports a facile technique to fabricate robust membrane-embedded microfluidic devices. We integrated an electrospun membrane into a polydimethylsiloxane (PDMS) device using the simple plasma-activated bonding technique. To increase the flexibility of the membrane and to address the leakage problem, the electrospun membrane was fabricated with the highest weight ratio of PDMS to polymethylmethacrylate (i.e., 6:1...
A hydrogen-bonded extracellular matrix-mimicking bactericidal hydrogel with radical scavenging and hemostatic function for ph-responsive wound healing acceleration
, Article Advanced Healthcare Materials ; 2020 ; Correia, A ; Hasany, M ; Figueiredo, P ; Dobakhti, F ; Eskandari, M. R ; Hosseini, H ; Abiri, R ; Khorshid, S ; Hirvonen, J ; Santos, H. A ; Shahbazi, M. A ; Sharif University of Technology
Wiley-VCH Verlag
2020
Abstract
Generation of reactive oxygen species, delayed blood clotting, prolonged inflammation, bacterial infection, and slow cell proliferation are the main challenges of effective wound repair. Herein, a multifunctional extracellular matrix-mimicking hydrogel is fabricated through abundant hydrogen bonding among the functional groups of gelatin and tannic acid (TA) as a green chemistry approach. The hydrogel shows adjustable physicochemical properties by altering the concentration of TA and it represents high safety features both in vitro and in vivo on fibroblasts, red blood cells, and mice organs. In addition to the merit of facile encapsulation of cell proliferation-inducing hydrophilic drugs,...
Gellan gel comprising short PVDF based-nanofibers: the effect of piezoelectric nanofiber on the mechanical and electrical behavior
, Article Materials Today Communications ; 2020 ; Ramazani Saadat Abadi, A ; Shirazi, F. H ; Hassanzadeh Nemati, N ; Sharif University of Technology
Elsevier Ltd
2020
Abstract
Gel-fiber structure with the potential of extracellular matrix (ECM) mimics can be introduced as a suitable candidate for bioengineering applications. In this study, piezoelectric gellan gel-fiber was prepared with incorporating poly(vinylidenefluoride) (PVDF)/glass-flake in the gellan matrix. Glass-flake nanoparticles were modified with silane group, PVDF/glass-flake nanofibers were synthesized and short-strand nanofibers were fabricated using the mechanical homogenizer method. Brunauer–Emmett–Teller (BET), Fourier-transform infrared spectroscopy (FTIR), and Thermogravimetric analysis (TGA) analyses were used for surface modification study, and scanning electron microscopy (SEM),...
In situ synthesized TiO2-polyurethane nanocomposite for bypass graft application: In vitro endothelialization and degradation
, Article Materials Science and Engineering C ; Volume 114 , May , 2020 ; Bagheri, R ; Pourjavadi, A ; Ghanbari, H ; Sharif University of Technology
Elsevier Ltd
2020
Abstract
The in vitro endothelial response of human umbilical vein endothelial cells was investigated on a poly (caprolactone)-based polyurethane surface vs an in situ TiO2-polyurethane nanocomposite surface, which has been produced as scaffolds for artificial vascular graft. The in situ synthesis of TiO2 nanoparticles in polyurethane provided surface properties that facilitated cellular adhesion, cell sensing, cell probing and especially cell migration. Cells on the nanocomposite surface have elongated morphology and were able to produce more extracellular matrix. All of these advantages led to an increase in the rate of endothelialization of the nanocomposite scaffold surface vs pure polyurethane....
Computational modeling of media flow through perfusion-based bioreactors for bone tissue engineering
, Article Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine ; Volume 234, Issue 12 , 2020 , Pages 1397-1408 ; Bohlouli, M ; Adavi, K ; Paknejad, Z ; Rezai Rad, M ; khani, M. M ; Salehi-Nik, N ; Khojasteh, A ; Sharif University of Technology
SAGE Publications Ltd
2020
Abstract
Bioreactor system has been used in bone tissue engineering in order to simulate dynamic nature of bone tissue environments. Perfusion bioreactors have been reported as the most efficient types of shear-loading bioreactor. Also, combination of forces, such as rotation plus perfusion, has been reported to enhance cell growth and osteogenic differentiation. Mathematical modeling using sophisticated infrastructure processes could be helpful and streamline the development of functional grafts by estimating and defining an effective range of bioreactor settings for better augmentation of tissue engineering. This study is aimed to conduct computational modeling for newly designed bioreactors in...
A novel procedure for micromechanical characterization of white matter constituents at various strain rates
, Article Scientia Iranica ; Volume 27, Issue 2 , 2021 , Pages 784-794 ; 10263098 (ISSN) ; Farahmand, F ; Ahmadian, M. T ; Sharif University of Technology
Sharif University of Technology
2021
Abstract
Optimal hyperplastic coeficients of the micromechanical constituents of the human brain stem were investigated. An evolutionary optimization algorithm was combined with a Finite Element (FE) model of a Representative Volume Element (RVE) to nd the optimal material properties of axon and Extra Cellular Matrix (ECM). The tension and compression test results of a previously published experiment were used for optimizing the material coeficients, and the shear experiment was used for the validation of the resulting constitutive model. The optimization algorithm was used to search for optimal shear moduli and ber sti ness of axon and ECM by tting the average stress in the axonal direction with the...
A three-dimensional micromechanical model of brain white matter with histology-informed probabilistic distribution of axonal fibers
, Article Journal of the Mechanical Behavior of Biomedical Materials ; Volume 88 , 2018 , Pages 288-295 ; 17516161 (ISSN) ; Farahmand, F ; Shamloo, A ; Sharif University of Technology
Elsevier Ltd
2018
Abstract
This paper presents a three-dimensional micromechanical model of brain white matter tissue as a transversely isotropic soft composite described by the generalized Ogden hyperelastic model. The embedded element technique, with corrected stiffness redundancy in large deformations, was used for the embedment of a histology-informed probabilistic distribution of the axonal fibers in the extracellular matrix. The model was linked to a multi-objective, multi-parametric optimization algorithm, using the response surface methodology, for characterization of material properties of the axonal fibers and extracellular matrix in an inverse finite element analysis. The optimum hyperelastic...
Design and fabrication of injectable microcarriers composed of acellular cartilage matrix and chitosan
, Article Journal of Biomaterials Science, Polymer Edition ; Volume 29, Issue 6 , 2018 , Pages 683-700 ; 09205063 (ISSN) ; Mashayekhan, S ; Sharif University of Technology
Taylor and Francis Inc
2018
Abstract
Cartilage is an avascular tissue with limited self-repair ability. Since the methods for treatment of cartilage defects have not been effective, new therapies based on tissue engineering are considered over the recent years. In this study, human cartilage tissue was decellularized and porous injectable microcarriers (MCs) composed of acellular extracellular matrix (ECM) of cartilage tissue and chitosan (CS), with different ECM weight ratios, were fabricated by electrospraying technique to be used in the treatment of articular cartilage defects. Various properties of ECM/CS MCs such as microstructure, mechanical strength, water uptake behaviour, and biodegradability rate were investigated....
Nanofibrillated chitosan coated highly ordered titania nanotubes array/graphene nanocomposite with improved biological characters
, Article Carbohydrate Polymers ; Volume 254 , 2021 ; 01448617 (ISSN) ; Bagheri, R ; Heidarpour, H ; Vossoughi, M ; Golizadeh, M ; Samadikuchaksaraei, A ; Sharif University of Technology
Elsevier Ltd
2021
Abstract
Designing multifunctional surfaces is key to develop advanced materials for orthopedic applications. In this study, we design a double-layer coating, assembled onto the completely regular titania nanotubes (cRTNT) array. Benefiting from the biological and topological characteristics of chitosan nanofibers (CH) and reduced graphene oxide (RGO) through a unique assembly, the designed material features promoted osteoblast cell viability, prolonged antibiotic release profile, as well as inhibited bacterial biofilm formation. The synergistic effect of RGO and CH on the biological performance of the surface is investigatSed. The unique morphology of the nanofibers leads to the partial coverage of...
Integrative Utilization of Microenvironments, Biomaterials and Computational Techniques for Advanced Tissue Engineering
, Article Journal of Biotechnology ; Volume 212 , 2015 , Pages 71-89 ; 01681656 (ISSN) ; Mohammadaliha, N ; Mohseni, M ; Sharif University of Technology
Elsevier
2015
Abstract
This review aims to propose the integrative implementation of microfluidic devices, biomaterials, and computational methods that can lead to a significant progress in tissue engineering and regenerative medicine researches. Simultaneous implementation of multiple techniques can be very helpful in addressing biological processes. Providing controllable biochemical and biomechanical cues within artificial extracellular matrix similar to in vivo conditions is crucial in tissue engineering and regenerative medicine researches. Microfluidic devices provide precise spatial and temporal control over cell microenvironment. Moreover, generation of accurate and controllable spatial and temporal...
Fully-coupled mathematical modeling of actomyosin-cytosolic two-phase flow in a highly deformable moving Keratocyte cell
, Article Journal of Biomechanics ; Volume 67 , January , 2018 , Pages 37-45 ; 00219290 (ISSN) ; Firoozabadi, B ; Saidi, M. S ; Sharif University of Technology
Elsevier Ltd
2018
Abstract
Interaction between intracellular dynamics and extracellular matrix (ECM) generally occurred into very thin fragment of moving cell, namely lamellipodia, enables all movable cells to crawl on ECM. In fast-moving cells such as fish Keratocytes, Lamellipodia including most cell area finds a fan-like shape during migration, with a variety of aspect ratio function of fish type. In this work, our purpose is to present a novel and more complete two-dimensional continuum mathematical model of actomyosin-cytosolic two-phase flow of a self-deforming Keratocyte with circular spreaded to steady fan-like shape. In the new approach, in addition to the two-phase flow of the F-actin and cytosol, the...
Tissue growth into three-dimensional composite scaffolds with controlled micro-features and nanotopographical surfaces
, Article Journal of Biomedical Materials Research - Part A ; Volume 101, Issue 10 , 2013 , Pages 2796-2807 ; 15493296 (ISSN) ; Simchi, A ; Dunlop, J. W. C ; Fratzl, P ; Bagheri, R ; Vossoughi, M ; Sharif University of Technology
2013
Abstract
Controlling topographic features at all length scales is of great importance for the interaction of cells with tissue regenerative materials. We utilized an indirect three-dimensional printing method to fabricate polymeric scaffolds with pre-defined and controlled external and internal architecture that had an interconnected structure with macro- (400-500 μm) and micro- (∼25 μm) porosity. Polycaprolactone (PCL) was used as model system to study the kinetics of tissue growth within porous scaffolds. The surface of the scaffolds was decorated with TiO2 and bioactive glass (BG) nanoparticles to the better match to nanoarchitecture of extracellular matrix (ECM). Micrometric BG particles were...
A foreign body response-on-a-chip platform
, Article Advanced Healthcare Materials ; Volume 8, Issue 4 , 2019 ; 21922640 (ISSN) ; Htwe, S. S ; Righi, M ; Liu, H ; Pietralunga, A ; Yesil Celiktas, O ; Maharjan, S ; Cha, B. H ; Shin, S. R ; Dokmeci, M. R ; Vrana, N. E ; Ghaemmaghami, A. M ; Khademhosseini, A ; Zhang, Y. S ; Sharif University of Technology
Wiley-VCH Verlag
2019
Abstract
Understanding the foreign body response (FBR) and desiging strategies to modulate such a response represent a grand challenge for implant devices and biomaterials. Here, the development of a microfluidic platform is reported, i.e., the FBR-on-a-chip (FBROC) for modeling the cascade of events during immune cell response to implants. The platform models the native implant microenvironment where the implants are interfaced directly with surrounding tissues, as well as vasculature with circulating immune cells. The study demonstrates that the release of cytokines such as monocyte chemoattractant protein 1 (MCP-1) from the extracellular matrix (ECM)-like hydrogels in the bottom tissue chamber...
A hydrogen-bonded extracellular matrix-mimicking bactericidal hydrogel with radical scavenging and hemostatic function for ph-responsive wound healing acceleration
, Article Advanced Healthcare Materials ; Volume 10, Issue 3 , 2021 ; 21922640 (ISSN) ; Correia, A ; Hasany, M ; Figueiredo, P ; Dobakhti, F ; Eskandari, M. R ; Hosseini, S.H ; Abiri, R ; Khorshid, S ; Hirvonen, J ; Santos, H. A ; Shahbazi, M. A ; Sharif University of Technology
Wiley-VCH Verlag
2021
Abstract
Generation of reactive oxygen species, delayed blood clotting, prolonged inflammation, bacterial infection, and slow cell proliferation are the main challenges of effective wound repair. Herein, a multifunctional extracellular matrix-mimicking hydrogel is fabricated through abundant hydrogen bonding among the functional groups of gelatin and tannic acid (TA) as a green chemistry approach. The hydrogel shows adjustable physicochemical properties by altering the concentration of TA and it represents high safety features both in vitro and in vivo on fibroblasts, red blood cells, and mice organs. In addition to the merit of facile encapsulation of cell proliferation-inducing hydrophilic drugs,...
A hydrogen-bonded extracellular matrix-mimicking bactericidal hydrogel with radical scavenging and hemostatic function for ph-responsive wound healing acceleration
, Article Advanced Healthcare Materials ; Volume 10, Issue 3 , 2021 ; 21922640 (ISSN) ; Correia, A ; Hasany, M ; Figueiredo, P ; Dobakhti, F ; Eskandari, M. R ; Hosseini, S. H ; Abiri, R ; Khorshid, S ; Hirvonen, J ; Santos, H. A ; Shahbazi, M. A ; Sharif University of Technology
Wiley-VCH Verlag
2021
Abstract
Generation of reactive oxygen species, delayed blood clotting, prolonged inflammation, bacterial infection, and slow cell proliferation are the main challenges of effective wound repair. Herein, a multifunctional extracellular matrix-mimicking hydrogel is fabricated through abundant hydrogen bonding among the functional groups of gelatin and tannic acid (TA) as a green chemistry approach. The hydrogel shows adjustable physicochemical properties by altering the concentration of TA and it represents high safety features both in vitro and in vivo on fibroblasts, red blood cells, and mice organs. In addition to the merit of facile encapsulation of cell proliferation-inducing hydrophilic drugs,...