Loading...
Search for: fabrication-routes
0.008 seconds

    Improving the performance of deadlock recovery based routing in irregular mesh NoCs using added mesh-like links

    , Article ISCAS 2010 - 2010 IEEE International Symposium on Circuits and Systems: Nano-Bio Circuit Fabrics and Systems ; 2010 , p. 3236-3239 ; ISBN: 9781424453085 Hosseingholi, M ; Ahmadian, A. S ; Sarbazi-Azad, H ; Sharif University of Technology
    Abstract
    Heterogeneity is one of the challenges in the current NoC design which forces designers to consider irregular topologies. Therefore, finding an optimal topology with minimum cost (minimum use of links, buffers, NIs, etc) and power consumption, and maximum flexibility can provide the best cost-performance trade-off. Irregular mesh is a topology which combines the benefits of regularity and advantage of irregularity. Routing algorithms especially those coupled with wormhole switching should deal with deadlock occurrences. Unlike deadlock avoidance-based schemes, deadlock detection and recovery-based routing schemes, do not restrict routing adaptability. In this paper, we modify irregular mesh... 

    Improving the performance of deadlock recovery based routing in irregular mesh NoCs using added mesh-like links

    , Article ISCAS 2010 - 2010 IEEE International Symposium on Circuits and Systems: Nano-Bio Circuit Fabrics and Systems, 30 May 2010 through 2 June 2010, Paris ; 2010 , Pages 3236-3239 ; 9781424453085 (ISBN) Hosseingholi, M ; Ahmadian, A. S ; Sarbazi Azad, H ; Sharif University of Technology
    2010
    Abstract
    Heterogeneity is one of the challenges in the current NoC design which forces designers to consider irregular topologies. Therefore, finding an optimal topology with minimum cost (minimum use of links, buffers, NIs, etc) and power consumption, and maximum flexibility can provide the best cost-performance trade-off. Irregular mesh is a topology which combines the benefits of regularity and advantage of irregularity. Routing algorithms especially those coupled with wormhole switching should deal with deadlock occurrences. Unlike deadlock avoidance-based schemes, deadlock detection and recovery-based routing schemes, do not restrict routing adaptability. In this paper, we modify irregular mesh... 

    Fabrication and properties of polycaprolactone composites containing calcium phosphate-based ceramics and bioactive glasses in bone tissue engineering: a review

    , Article Polymer Reviews ; Volume 58, Issue 1 , 2018 , Pages 164-207 ; 15583724 (ISSN) Hajiali, F ; Tajbakhsh, S ; Shojaei, A ; Sharif University of Technology
    Taylor and Francis Inc  2018
    Abstract
    Polycaprolactone (PCL) is a bioresorbable and biocompatible polymer that has been widely used in long-term implants and controlled drug release applications. However, when it comes to tissue engineering, PCL suffers from some shortcomings such as slow degradation rate, poor mechanical properties, and low cell adhesion. The incorporation of calcium phosphate-based ceramics and bioactive glasses into PCL has yielded a class of hybrid biomaterials with remarkably improved mechanical properties, controllable degradation rates, and enhanced bioactivity that are suitable for bone tissue engineering. This review presents a comprehensive study on recent advances in the fabrication and properties of... 

    Development of metal matrix composites and nanocomposites via double-pressing double-sintering (dpds) method

    , Article Materials Today Communications ; Volume 25 , 2020 Alem, A. A ; Latifi, R ; Angizi, S ; Mohamadbeigi, N ; Rajabi, M ; Ghasali, E ; Orooji, Y ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Achieving high densification parameter is an essential factor for metal-based composites to represent excellent mechanical characteristics. Among various compaction methods, double-pressing double-sintering (DPDS) has gained the attraction of researchers to fabricate metal-matrix composites (MMCs) as an efficient technique over the last decade. In this process, the powder will be pre-pressed and then pre-sintered; it helps reduce work hardening and prepare the sample for better densification in the next pressing and sintering step. By employing the above-mentioned method, carbon nanotube (CNT) reinforced aluminum nanocomposites; ZrB2 reinforced copper nanocomposites; and CNT reinforced...