Loading...
Search for: fabry-perot
0.005 seconds

    A theoretical multi-reflection method for analysis of optomechanical behavior of the Fabry-Perot cavity with moving boundary condition

    , Article Optics Communications ; Volume 284, Issue 19 , 2011 , Pages 4789-4794 ; 00304018 (ISSN) Bahrampour, A. R ; Vahedi, M ; Abdi, M ; Ghobadi, R ; Golshani, M ; Tofighi, S ; Parvin, B ; Sharif University of Technology
    Abstract
    The opto-mechanical coupling and the generation of Stokes and anti-Stokes frequencies in the in-band and intra-band regimes of operation of the Fabry-Perot cavity with a moving mirror on the basis of multi-reflection method (MRM) are described by a unique theory. The frequency characteristic function of the Fabry-Perot filter is modified. By increasing the amplitude of mirror oscillation the Fabry-Perot bandwidth increases and normal mode splitting occurred. The conversion efficiencies of the Stokes and anti-Stokes frequencies versus the mechanical amplitude of oscillation have an optimum value. Also, the delay function corresponding to the radiation pressure is obtained  

    Opto-Mechanical Oscillations in Fabry-Perot Cavity With Two Mechanical Degrees of Freedom

    , M.Sc. Thesis Sharif University of Technology Golshani Gharyeh Ali, Mojtaba (Author) ; Bahrampour, Alireza (Supervisor)
    Abstract
    The coupling of optical and mechanical degrees of feedom via radiation pressure has been a subject of early research in the context of gravitational wave detection. Recent experimental advances have allowed studying the modifications of mechanical dynamics provided by radiation pressure. First, this thesis reviews the consequences of dynamic back-action in optical microcavities with mechanical degree of feedom, and presents a unified treatment of its two manifestations: the parametric instability (mechanical amplification or oscillation) and radiation pressure back-action cooling. Then, by considering the Fabry-Perot cavity with two movable mirrors, and using Multi-Reflection Method, we... 

    Analysis of chaotic behavior in an optical microresonator

    , Article Optics Communications ; Vol. 332, issue , 2014 , pp. 31-35 ; ISSN: 00304018 Vahedi, M ; Bahrampour, A. R ; Safari, H. R ; Sharif University of Technology
    Abstract
    In this paper, for the first time, chaotic behavior of a classical moving-mirror Fabry-Perot cavity is obtained by finding numerical solution of a system of delay differential equations (previously obtained by a phenomenological approach (T. Carmon, M. C. Cross, K. J. Vahala, Phys. Rev. Lett. 98 (2007) 167203)). Fourier transform of the electromagnetic power for different values of pump power is calculated. By increasing the power, a period-doubling route to chaos is observed. Since the quality factor of the cavity has an important role in the chaotic behavior, variation of Lyapunov exponent and threshold power for the onset of chaos versus quality factor are investigated. A near linear... 

    Local density of states of a finite-sized rectangular-lattice photonic crystal with separable profile of permittivity

    , Article Waves in Random and Complex Media ; Volume 20, Issue 3 , 2010 , Pages 419-442 ; 17455030 (ISSN) Baradaran Ghasemi, A. H ; Khorasani, S ; Latifi, H ; Atabaki, A. H ; Sharif University of Technology
    2010
    Abstract
    A different approach in the calculation of two-dimensional local density of states has been presented for a two-dimensional finite rectangular-lattice photonic crystal with a separable profile of permittivity. Approximate staircase structures are already shown to be useful for their ability to reproduce actual properties of practical square lattice photonic crystals. Using the effective resonance approach in a Fabry-Perot resonator and transfer matrix method an analytical expression for calculating a two-dimensional local density of states can be derived for both polarisations in the structure. It is shown that for this geometry one can resolve the modes as a product of two separate... 

    The Behavior of an Optomechanical System with Two Mechanical Modes in the Presence of Nonlinear Medium

    , M.Sc. Thesis Sharif University of Technology Darvishi, Morteza (Author) ; Bahrampour, Alireza (Supervisor)
    Abstract
    A cavity optomechanical system is created when the resonance frequency of an optical cavity is influenced by the position of a mechanical oscillator. To observe quantum effects and quantum applications of these systems, cooling of mechanical mode(s) participating in these interactions is very important. At first, the dissertation focus on the trend that people were trying to study radiation pressure theoretically and experimentally and then present classical and the quantum picture of radiation pressure. Next, the diverse geometries are based on the optomechanical interaction are described concisely. Fabry-Perot cavity with one degree of freedom has considered and then the Stokes and The... 

    Entanglement in a Fabry-Perot Cavity with one Mechanical Degree of Freedom in the Presence of a Quantum Dot and the Laser Phase Noise

    , M.Sc. Thesis Sharif University of Technology Alizadeh, Mohammad Hossein (Author) ; Bahrampour, Alireza (Supervisor)
    Abstract
    Coupling of optical and mechanical degrees of freedom through radiation pressure was, first, observed in the experiments for detection of gravitational waves. Recent experimental advances have granted reality to the long-hankered-after coupling between microscopic and macroscopic systems. In the first step, this thesis will review different aspects of cavity Optomechanics, such as: cooling, side-band formation and dynamics of an Optomechanical cavity. Then we will go further and study the Optomechanical dynamics of a cavity in the presence of an atom. To do so, we will analyze the entanglement, created between the center of mass motion of the atom and the mirror and will probe into its... 

    Frequency Comb Generation Using Time-Varying Electromagnetic Structures

    , M.Sc. Thesis Sharif University of Technology Hakimi, Amin (Author) ; Mehrany, Khashayar (Supervisor) ; Memarian, Mohammad (Co-Supervisor)
    Abstract
    This thesis presents a resonant time-periodic structure based on the Fabry-Perot resonator for frequency comb generation. Time-periodic structures cannot generate a frequency comb by themselves because side-harmonic amplitudes are really weak. However, due to resonant structure, it is expected that the side-harmonics, which are generated because of the time-periodic part of the structure, are increased if they are close to the main modes of the structure. But the results show that, generally, the amplitude of side harmonics, which are close to the main mode, is increased and far side-harmonics don't have remarkable amplitudes. However, we will show that if the modulation frequency of the... 

    Driving of Quantum Hamiltonian Relative to The One Dimentional Cavity With Oscilating Mirror and Semi-Transparent Mirror

    , M.Sc. Thesis Sharif University of Technology Bathaee, Marzieh Sadat (Author) ; Bahrampour, Alireza (Supervisor)
    Abstract
    The concept of entanglement exists in the common area of the quantum optics and quantum information. Quantum optics is the best tools for investigating of this quantum informational phenomenon experimentally. One of the instruments that let us observes experimentally macroscopy entangeled state is Fabry-Perot Cavity. Striking of photons with the mirror of cavity transfer effective mommentom to it, and oscilating of mirror creates new modes: stocks and anti-stocks modes. Studing quantum state of these modes shows the entangling between photon and phonon (oscilating of mirror) modes. We assume that light beam enters the cavity from a semi-transparent mirror. So cavity is the system with... 

    Wideband and narrowband circuit models for fano-shape guided-mode resonance

    , Article IEEE Journal of Quantum Electronics ; Volume 55, Issue 3 , 2019 ; 00189197 (ISSN) Saba, A ; Memarian, M ; Mehrany, K ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2019
    Abstract
    In this paper, we propose two different types of circuit models for Fano-shape guided-mode resonance (GMR) in waveguide gratings. Both the models constitute a resonant tank circuit together with a direct non-resonant channel between the incident and scattered light. One neglects the frequency dependence of the direct non-resonant channel and is only more accurate in the immediate vicinity of the Fano-type resonance. The other accounts for the frequency dependence of the direct non-resonant channel and thus remains accurate within a wider range of frequencies. The former being referred to as the narrow-band model is extremely accurate, insofar as the isolated GMR is of interest within a... 

    Wide-and narrow-band circuit models for fano-shape guided mode resonance

    , Article IEEE Journal of Quantum Electronics ; 2019 ; 00189197 (ISSN) Saba, A ; Memarian, M ; Mehrany, K ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2019
    Abstract
    In this paper, we propose two different types of circuit models for Fano-shape guided mode resonance (GMR) in waveguide gratings. Both models constitute a resonant tank circuit together with a direct non-resonant channel between the incident and the scattered light. One neglects the frequency dependence of the direct non-resonant channel and is only more accurate in the immediate vicinity of the Fano type resonance. The other accounts for the frequency dependence of the direct non-resonant channel and thus remains accurate within a wider range of frequencies. The former being referred to as the narrow-band model is extremely accurate insofar as the isolated GMR is of interest within a narrow... 

    Wide-and narrow-band circuit models for fano-shape guided mode resonance

    , Article IEEE Journal of Quantum Electronics ; 2019 ; 00189197 (ISSN) Saba, A ; Memarian, M ; Mehrany, K ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2019
    Abstract
    In this paper, we propose two different types of circuit models for Fano-shape guided mode resonance (GMR) in waveguide gratings. Both models constitute a resonant tank circuit together with a direct non-resonant channel between the incident and the scattered light. One neglects the frequency dependence of the direct non-resonant channel and is only more accurate in the immediate vicinity of the Fano type resonance. The other accounts for the frequency dependence of the direct non-resonant channel and thus remains accurate within a wider range of frequencies. The former being referred to as the narrow-band model is extremely accurate insofar as the isolated GMR is of interest within a narrow...