Loading...
Search for: fatigue-life-prediction
0.005 seconds

    Fatigue analysis of antiroll bar for periodic and random inputs using various theories and introducing a new method

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings, 13 November 2009 through 19 November 2009, Lake Buena Vista, FL ; Volume 13 , 2010 , Pages 71-76 ; 9780791843864 (ISBN) Azadi, M ; Zahedi, F ; Sharif University of Technology
    American Society of Mechanical Engineers (ASME)  2010
    Abstract
    In the present paper, fatigue analysis of an antiroll bar is investigated and compared for several criterions by using the finite element method (FEM) and also the experimental results. The validity of some of commonly used criterions in estimating fatigue life including Mcdiarmid and Von Misses theories is examined in which the inputs are considered as periodic data. For random inputs, some other methods are proposed including new suggestions and also a new criterion are established for estimation of fatigue life based on Mcdiarmid and Von Misses criterions. Prediction capability of mentioned new criterion which is evaluated for the antiroll bar, shows better results than other methods... 

    New approach for fatigue life prediction of composite plates using micromechanical bridging model

    , Article Journal of Composite Materials ; Volume 49, Issue 3 , February , 2015 , Pages 309-319 ; 00219983 (ISSN) Adibnazari, S ; Farsadi, M ; Koochi, A ; Khorashadizadeh, S. N ; Sharif University of Technology
    SAGE Publications Ltd  2015
    Abstract
    The use of micromechanical models to study composite material's behavior leads to save time and cost. In this paper, bridging micromechanical models have been used in order to observe the behavior of unidirectional laminate composite under fatigue loading. In order to study the fatigue behavior, stiffness degradation has been studied as well as the strength degradation and a driftnet model has been proposed for each of them. The strength degradation has only been studied for the unidirectional fiber, while the stiffness degradation has been studied for the fibers with different fiber angle. The results are compared with macro-mechanical models and other methods in literature  

    Stochastic fatigue life prediction of Fiber-Reinforced laminated composites by continuum damage Mechanics-based damage plastic model

    , Article International Journal of Fatigue ; Volume 152 , 2021 ; 01421123 (ISSN) Gholami, P ; Farsi, M. A ; Kouchakzadeh, M. A ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    In this paper, the evolution of elastic–plastic damage in the composite laminates under fatigue conditions is modeled. Continuum damage mechanics (CDM) has been coupled with the bridge micromechanics model to estimate the fatigue damage and life for laminated composite structures. Based on the elastic–plastic bridging model, three damage variables are defined. These variables estimate the fiber, matrix, and fiber/matrix damage response at the ply scale. To model the beginning of plastic deformation, a yield function is utilized, and evolution equations of the damage variables are obtained. Then the developed deformation plastic model is calculated. The model parameters are calibrated by... 

    Fatigue life prediction of pre-corroded AZ31 magnesium alloy based on surface topology

    , Article Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science ; 2021 ; 09544062 (ISSN) Shamsarjmand, M ; Adibnazari, S ; Sharif University of Technology
    SAGE Publications Ltd  2021
    Abstract
    This research explored the corrosion effect of NaCl solution on the surface quality of AZ31 magnesium alloy. Cubic-shaped specimens were immersed in standard 3.5% NaCl solution for 1, 2, 3, and 4 hours. The size of corrosion pits, fatigue crack propagation area, and surface topology were characterized. Fatigue tests were carried out on pre-corroded AZ31 specimens under different stress amplitudes. The correlation between the corrosion time and the virtual crack size was obtained. The virtual crack size is a new parameter that can relate the corrosion to the fatigue life. A new model was proposed to map the surface topology on the virtual crack size of pre-corroded AZ31 magnesium alloy. The... 

    Fatigue life prediction of pre-corroded AZ31 magnesium alloy based on surface topology

    , Article Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science ; Volume 236, Issue 7 , 2022 , Pages 3623-3635 ; 09544062 (ISSN) Shamsarjmand, M ; Adibnazari, S ; Sharif University of Technology
    SAGE Publications Ltd  2022
    Abstract
    This research explored the corrosion effect of NaCl solution on the surface quality of AZ31 magnesium alloy. Cubic-shaped specimens were immersed in standard 3.5% NaCl solution for 1, 2, 3, and 4 hours. The size of corrosion pits, fatigue crack propagation area, and surface topology were characterized. Fatigue tests were carried out on pre-corroded AZ31 specimens under different stress amplitudes. The correlation between the corrosion time and the virtual crack size was obtained. The virtual crack size is a new parameter that can relate the corrosion to the fatigue life. A new model was proposed to map the surface topology on the virtual crack size of pre-corroded AZ31 magnesium alloy. The...