Loading...
Search for: fatigue-strength
0.006 seconds

    Shot peening coverage effect on residual stress profile by FE random impact analysis

    , Article Surface Engineering ; Volume 32, Issue 11 , 2016 , Pages 861-870 ; 02670844 (ISSN) Ghasemi, A ; Hassani Gangaraj, S. M ; Mahmoudi, A. H ; Farrahi, G. H ; Guagliano, M ; Sharif University of Technology
    Taylor and Francis Ltd  2016
    Abstract
    Shot peening is one of the most effective surface treatments for improving the fatigue strength of machine elements. In this paper, a new finite element-based model to predict the effect of coverage on the surface state is proposed and critically discussed. By this model, the effects of Rayleigh damping, mesh size, and target dimensions on residual stress profile are investigated using a random impingement simulation of shot peening. Moreover, the model enables the realistic simulation of shot peening process with an affordable computational time with respect of present approaches without reducing the number of impacts and analysis accuracy: the computational time was reduced by 25% in... 

    Effect of combined shot peening and ultrasonic nanocrystal surface modification processes on the fatigue performance of AISI 304

    , Article Surface and Coatings Technology ; Volume 358 , 2019 , Pages 695-705 ; 02578972 (ISSN) Amanov, A ; Karimbaev, R ; Maleki, E ; Unal, O ; Pyun, Y. S ; Amanov, T ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    In this study, the fatigue performance of AISI 304 subjected to shot peening (SP), ultrasonic nanocrystal surface modification (UNSM) and the combination of SP + UNSM processes was systematically assessed by rotary bending fatigue (RBF) tester at different stress levels. The purpose of combining SP and UNSM processes is to find out whether SP following UNSM process can further improve the fatigue life of AISI 304 in comparison with the SP and UNSM processes alone. Interestingly, the fatigue strength of AISI 304 was deteriorated by the combination of SP + UNSM processes in comparison with the UNSM process alone, but the combination of SP + UNSM processes demonstrated a higher fatigue strength... 

    Finite element analysis of shot-peening effect on fretting fatigue parameters

    , Article Tribology International ; Volume 44, Issue 11 , 2011 , Pages 1583-1588 ; 0301679X (ISSN) H-Gangaraj, S. M ; Alvandi Tabrizi, Y ; Farrahi, G. H ; Majzoobi, G. H ; Ghadbeigi, H ; Sharif University of Technology
    Abstract
    Shot peening is widely used to improve the fretting fatigue strength of critical surfaces. Fretting fatigue occurs in contacting parts that are subjected to fluctuating loads and sliding movements at the same time. This paper presents a sequential finite element simulation to investigate the shot peening effects on normal stress, shear stress, bulk stress and slip amplitude, which are considered to be the controlling parameters of fretting damage. The results demonstrated that among the modifications related to shot peening, compressive residual stress has a dominant effect on the fretting parameters  

    The effect of dynamic strain aging on subsequent mechanical properties of dual-phase steels

    , Article Journal of Materials Engineering and Performance ; Volume 19, Issue 4 , June , 2010 , Pages 607-610 ; 10599495 (ISSN) Molaei, M. J ; Ekrami, A ; Sharif University of Technology
    2010
    Abstract
    Dual-phase (DP) steels with different martensite contents were produced by subjecting a low carbon steel to various heat treatment cycles. In order to investigate the effect of dynamic strain aging (DSA) on mechanical properties, tensile specimens were deformed 3% at 300 °C. Room temperature tensile tests of specimens which deformed at 300 °C showed that both yield and ultimate tensile strengths increased, while total elongation decreased. The fatigue limit increased after pre-strain in the DSA temperature range. The effects of martensite volume fraction on mechanical properties were discussed  

    The effect of dynamic strain aging on fatigue properties of dual phase steels with different martensite morphology

    , Article Materials Science and Engineering A ; Volume 527, Issue 1-2 , 2009 , Pages 235-238 ; 09215093 (ISSN) Molaei, M. J ; Ekrami, A ; Sharif University of Technology
    Abstract
    Dual phase (DP) steels with network and fibrous martensite were produced by intercritical annealing heat treatment cycles. Some of these steels were deformed at dynamic strain aging temperatures. Room temperature tensile tests of specimens deformed at 300 °C showed that both yield and ultimate tensile strengths for both morphologies increased, while total elongation decreased. Fatigue test results before and after high temperature deformation showed that dynamic strain aging has a stronger effect on fatigue properties of dual phase steels with fibrous martensite. Cracks in DP steels with fibrous martensite propagate in a tortuous path in soft ferrite phase, while they pass of both hard and... 

    Experimental and numerical fatigue life study of cracked AL plates reinforced by glass/epoxy composite patches in different stress ratios

    , Article Mechanics Based Design of Structures and Machines ; Volume 49, Issue 6 , 2021 , Pages 894-910 ; 15397734 (ISSN) Hosseini, K ; Safarabadi, M ; Ganjiani, M ; Mohammadi, E ; Hosseini, A ; Sharif University of Technology
    Bellwether Publishing, Ltd  2021
    Abstract
    In this study, the fatigue behavior of composite reinforced cracked aluminum 1050 plates is investigated experimentally and numerically. The tests are conducted in four different stress ratios between 0 and 1. At first step, plates with similar cracks and geometries have been prepared. Then the glass/epoxy patches have been attached to the cracked plates using Araldite 2015 adhesive. Fatigue load has been applied to three cases of samples including non-patch, one-side patch and two-side patch, where in all stress ratios the maximum force is considered constant. A three-dimensional finite element analysis is developed in ABAQUS. A good correlation between finite element results and the... 

    Tensile and fatigue fracture of nanometric alumina reinforced copper with bimodal grain size distribution

    , Article Materials Science and Engineering A ; Volume 507, Issue 1-2 , 2009 , Pages 200-206 ; 09215093 (ISSN) Simchi, H ; Simchi, A ; Sharif University of Technology
    2009
    Abstract
    Alumina dispersion-strengthened copper was produced by an internal oxidation process and hot powder extrusion method. The microstructure of the composite consisted of fine-grained region with an average grain size of 1.1 ± 0.1 μm, coarse-grained region with an average grain size of 5.6 ± 0.1 μm, nanometric alumina particles (γ-type) with an average diameter of 30 nm, and coarse alumina particles (350 nm) at the boundaries of the large grains. The tensile and fatigue fracture of the composite was studied in the extruded condition and after 11% cold working. The low cycle fatigue behavior was examined in strain control mode (ε = 0.5%) under fully reverse tension-compression cycle at 1 Hz up to...