Loading...
Search for: fault-detection-schemes
0.005 seconds

    Wind energy conversion system based on DFIG with open switch fault tolerant six-legs AC-DC-AC converter

    , Article Proceedings of the IEEE International Conference on Industrial Technology, Cape Town ; February , 2013 , Pages 1656-1661 ; 9781467345699 (ISBN) Shahbazi, M ; Zolghadri, M. R ; Poure, P ; Saadate, S ; The Institute of Electrical and Electronics Engineers (IEEE); IEEE Industrial Electronics Society (IES); IEEE Technology Management Council; IEEE Region 8; IEEE South Africa Section IE/IA/PEL Joint Chapter ; Sharif University of Technology
    2013
    Abstract
    Continuity of service of wind energy conversion systems as well as their reliability and performances are some of the major concerns in this power generation area. Six-legs AC/DC/AC converters are normally used in modern wind energy systems like as in the system with a doubly-fed induction generator (DFIG). A sudden failure of the converter can lead to the total or partial loss of the control of the phase currents and can cause serious system malfunction or shutdown. Therefore, to prevent the spread of the fault to the other system components and to ensure continuity of service, fault tolerant converter topologies associated to quick and effective fault detection and compensation methods... 

    Reliable hardware architectures for efficient secure hash functions ECHO and fugue

    , Article 15th ACM International Conference on Computing Frontiers, CF 2018, 8 May 2018 through 10 May 2018 ; 2018 , Pages 204-207 ; 9781450357616 (ISBN) Mozaffari Kermani, M ; Azarderakhsh, R ; Bayat Sarmadi, S ; ACM Special Interest Group on Microarchitectural Research and Processing (SIGMICRO) ; Sharif University of Technology
    Association for Computing Machinery, Inc  2018
    Abstract
    In cryptographic engineering, extensive attention has been devoted to ameliorating the performance and security of the algorithms within. Nonetheless, in the state-of-the-art, the approaches for increasing the reliability of the efficient hash functions ECHO and Fugue have not been presented to date.We propose efficient fault detection schemes by presenting closed formulations for the predicted signatures of different transformations in these algorithms. These signatures are derived to achieve low overhead for the specific transformations and can be tailored to include byte/word-wide predicted signatures. Through simulations, we show that the proposed fault detection schemes are... 

    High-Performance Fault Diagnosis Schemes for Efficient Hash Algorithm BLAKE

    , Article 10th IEEE Latin American Symposium on Circuits and Systems, LASCAS 2019, 24 February 2019 through 27 February 2019 ; 2019 , Pages 201-204 ; 9781728104522 (ISBN) Mozaffari Kermani, M ; Bayat Sarmadi, S ; Ackie, A. B ; Azarderakhsh, R ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2019
    Abstract
    Augmenting the security of cryptographic algorithms by protecting them against side-channel active attacks (and natural faults) is essential in cryptographic engineering. BLAKE algorithm is an efficient hash function which has been developed based on Bernstein's ChaCha stream cipher. Because of the fact that Google has chosen ChaCha along with Bernstein's Poly1305 message authentication code as a replacement for RC4 in TLS for Internet security, BLAKE's implementation is of paramount importance. In this paper, we present high-performance fault detection schemes for BLAKE. Specifically, for the round function, two fault diagnosis approaches are developed and analyzed in terms of error... 

    Fault-tolerant five-leg converter topology with FPGA-Based reconfigurable control

    , Article IEEE Transactions on Industrial Electronics ; Volume 60, Issue 6 , 2013 , Pages 2284-2294 ; 02780046 (ISSN) Shahbazi, M ; Poure, P ; Saadate, S ; Zolghadri, M. R ; Sharif University of Technology
    2013
    Abstract
    Fast fault detection and reconfiguration of power converters is necessary in electrical drives to prevent further damage and to make the continuity of service possible. On the other hand, component minimized converters may provide the benefits of higher reliability and less volume and cost. In this paper, a new fault-tolerant converter topology is studied. This converter has five legs before the fault occurrence, and after fault detection the converter continues to function with four legs. A very fast fault detection and reconfiguration scheme is presented and studied. Simulations and experimental tests are performed to evaluate the structure requirements, the digital reconfigurable... 

    Fast detection of open-switch faults with reduced sensor count for a fault-tolerant three-phase converter

    , Article 2011 2nd Power Electronics, Drive Systems and Technologies Conference, PEDSTC 2011 ; 2011 , Pages 546-550 ; 9781612844213 (ISBN) Shahbazi, M ; Zolghadri, M ; Poure, P ; Saadate, S ; Sharif University of Technology
    Abstract
    Fast fault detection and reconfiguration is necessary in power electronic converters in lots of applications to prevent further damage and to make possible the continuity of service. In this paper a very fast fault detection scheme is presented that minimizes the use of voltage sensors. A fault tolerant topology is studied. Control and fault detection system are implemented on a single FPGA and hardware in the loop experiments are performed to evaluate the detection scheme, the digital controller and the structure  

    Performance improvement of steady-state and transient operation of offshore wind farm HVDC power transmission

    , Article 2015 IEEE 16th Workshop on Control and Modeling for Power Electronics, COMPEL 2015, 12 July 2015 through 15 July 2015 ; July , 2015 , Page(s): 1 - 7 ; 9781467368476 (ISBN) Safaeian, R ; Ebrahimi, S ; Parniani, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2015
    Abstract
    Wind power generation is increasing fast as a clean renewable energy resource. Offshore wind farms are popular due to advantages such as higher and smoother wind speeds, less farm site limitations, etc. High capacitive currents and need to expensive compensations, make use of high-voltage-direct-current (HVDC) power transmission indispensable for longdistance wind farm power generations. Steady-state and transient performance improvements of HVDC systems have always been an interesting industrial and academic research area. In this paper, a novel control method is proposed to improve the steady-state operation of HVDC system. Moreover, a new fault detection scheme is proposed to improve the... 

    FPGA-based fault tolerant scheme with reduced extra-sensor number for WECS with DFIG

    , Article Proceedings - ISIE 2011: 2011 IEEE International Symposium on Industrial Electronics, 27 June 2011 through 30 June 2011 ; 2011 , Pages 1595-1601 ; 9781424493128 (ISBN) Shahbazi, M ; Gaillard, A ; Poure, P ; Zolghadri, M. R ; Sharif University of Technology
    2011
    Abstract
    Fast fault detection and converter reconfiguration is necessary for fault tolerant doubly fed induction generator (DFIG) in wind energy conversion systems (WECS) to prevent further damage and to make possible the continuity of service. Extra sensors are needed in order to detect the faults rapidly. In this paper, a very fast FPGA-based fault detection scheme is presented that minimizes the number of additional voltage sensors. A fault tolerant converter topology for this application is studied. Control and fault detection system are implemented on a single FPGA and Hardware in the Loop experiments are performed to evaluate the proposed detection scheme, the digital controller and the fault...