Loading...
Search for: fault-diagnosis-algorithm
0.011 seconds

    IGBT open-circuit fault diagnosis in a Quasi-Z-source inverter

    , Article IEEE Transactions on Industrial Electronics ; Volume 66, Issue 4 , 2019 , Pages 2847-2856 ; 02780046 (ISSN) Yaghoubi, M ; Shokrollahi Moghani, J ; Noroozi, N ; Zolghadri, M. R ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2018
    Abstract
    In this paper, a fast and practical method is proposed for open-circuit (OC) fault diagnosis (FD) in a three-phase quasi-Z-source inverter (q-ZSI). Compared to the existing fast OC FD techniques in three-phase voltage-source inverters (VSIs), this method is more cost-effective since no ultra-fast processor or high-speed measurement is required. Additionally, the method is independent of the load condition. The proposed method is only applicable to Z-source family inverters and is based on observing the effect of shoot-through (SH) intervals on the system variables during switching periods. The proposed algorithm includes two consecutive stages: OC detection and fault location identification.... 

    IGBT Open-circuit fault diagnosis in a quasi-z-source inverter

    , Article IEEE Transactions on Industrial Electronics ; Volume 66, Issue 4 , 2019 , Pages 2847-2856 ; 02780046 (ISSN) Yaghoubi, M ; Moghani, J. S ; Noroozi, N ; Zolghadri, M. R ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2019
    Abstract
    In this paper, a fast and practical method is proposed for open-circuit (OC) fault diagnosis (FD) in a three-phase quasi-Z-source inverter (q-ZSI). Compared with the existing fast OC FD techniques in three-phase voltage source inverters, this method is more cost-effective since no ultrafast processor or high-speed measurement is required. Additionally, the method is independent of the load condition. The proposed method is only applicable to Z-source family inverters and is based on observing the effect of shoot-through intervals on the system variables during switching periods. The proposed algorithm includes two consecutive stages: OC detection and fault location identification. When both...