Loading...
Search for: fe-modelling
0.005 seconds

    PCS_SUT: A finite element software for simulation of powder forming processes

    , Article Journal of Materials Processing Technology ; Volume 125-126 , 2002 , Pages 602-607 ; 09240136 (ISSN) Khoei, A. R ; Sharif University of Technology
    2002
    Abstract
    As product complexity increases and economic constraints result in a demand for greater efficiency, industry must invest in new innovative ways to assist design and manufacture. As a first step in the long-term development of such a system, a computer software environment has been developed for pre- and post-processing for unstructured grid-based computational simulation. This paper describes the powder compaction software (PCS_SUT), which is designed for pre- and post-processing for computational simulation of the compaction of powder. Pre-processing software is used to create the model, generate an appropriate finite element grid, apply the appropriate boundary conditions, and view the... 

    Can simple trunk muscle models balance and stabilize lumbar spine during support of symmetric and asymmetric loads? a FE model study

    , Article 2007 ASME Summer Bioengineering Conference, SBC 2007, Keystone, CO, 20 June 2007 through 24 June 2007 ; 2007 , Pages 443-444 ; 0791847985 (ISBN); 9780791847985 (ISBN) Kiapour, A ; Shirazi Adl, A ; Parnianpour, M ; Sharif University of Technology
    2007

    FE modelling of mechanical interaction of lugged frp rods with concrete, comparison between experiment and simulation

    , Article Advanced Polymer Composites for Structural Applications in Construction: ACIC 2004 ; 2004 , Pages 509-516 ; 9781845690649 (ISBN); 9781855737365 (ISBN) Khoei, A. R ; Irannejad, H. R ; Sharif University of Technology
    Elsevier Inc  2004
    Abstract
    The main objective of this paper is to present a numerical simulation of mechanical interaction (bond mechanism) of lugged FRP rods with concrete. A finite element analysis is performed and the major causes of bond in lugged rod's interface with concrete are summarized. The concept of ascending and descending behavior of a rib under pull-out load is discussed. A simple procedure is employed to model the crack formation and propagation in the concrete block below the rib. Details and general aspects of model are described and numerical results are compared with experiments. Finally, it has been concluded that the proposed model can be effectively used for the simulation of bond behavior of... 

    Predicting concrete arch dams stresses in linear domain using Endurance Time method

    , Article Dam Maintenance and Rehabilitation II - Proceedings of the 2nd International Congress on Dam Maintenance and Rehabilitation, 23 November 2010 through 25 November 2010 ; 2011 , Pages 125-132 ; 9780415616485 (ISBN) Hariri Ardebili, M. A ; Mirzabozorg, H ; Gaemian, M ; Sharif University of Technology
    Abstract
    At present study, Endurance Time (ET) method that is a new dynamic pushover procedure is introduced and its application in predicting concrete arch dam behavior in linear domain is investigated. In this method structure is subjected to gradually intensifying acceleration functions. DEZ arch dam was selected as case study. FE model of dam-reservoir-foundation was excited in three levels of MCL, MDL, DBL using six records scaled based on design spectrum of the site and results were compared with those obtained from ET analyses. It was found that results obtained from ET method at equivalent target time are in good agreement with extreme results obtained from exciting the system using natural... 

    Material property identification of artificial degenerated intervertebral disc models - comparison of inverse poroelastic finite element analysis with biphasic closed form solution

    , Article Journal of Mechanics ; Volume 29, Issue 4 , 2013 , Pages 589-597 ; 17277191 (ISSN) Nikkhoo, M ; Hsu, Y. C ; Haghpanahi, M ; Parnianpour, M ; Wang, J. L ; Sharif University of Technology
    2013
    Abstract
    ABSTRACT Disc rheological parameters regulate the mechanical and biological function of intervertebral disc. The knowledge of effects of degeneration on disc rheology can be beneficial for the design of new disc implants or therapy. We developed two material property identification protocols, i.e., inverse poroelas-tic finite element analysis, and biphasic closed form solution. These protocols were used to find the material properties of intact, moderate and severe degenerated porcine discs. Comparing these two computational protocols for intact and artificial degenerated discs showed they are valid in defining bi-phasic/poroelastic properties. We found that enzymatic agent disrupts the... 

    On the analysis of simple shear problem using the micro-polar hypoelasticity Cosserat theory

    , Article European Journal of Mechanics, A/Solids ; Volume 29, Issue 4 , July–August , 2010 , Pages 664-674 ; 09977538 (ISSN) Karimi, K ; Khoei, A. R ; Sharif University of Technology
    2010
    Abstract
    In this paper, an analysis of kinematics of the isotropic elastic Cosserat continuum is presented in infinitesimal and finite deformations. Emphasis is given on the applicability of corotational stress rates for hypoelasticity in micro-polar continua. A non-linear finite element analysis is performed with an explicit formulation of tangent stiffness matrices in the case of Truesdell stress and couple stress rates. A comprehensive path-dependent procedure is employed based on the arc-length method to calculate the stability points and handle the snap-back problem. Finally, the accuracy and efficiency of method are illustrated by numerical examples  

    The effects of intra-abdominal pressure on the stability and unloading of the spine

    , Article Journal of Mechanics in Medicine and Biology ; Volume 12, Issue 1 , 2012 ; 02195194 (ISSN) Mokhtarzadeh, H ; Farahmand, F ; Shirazi Adl, A ; Arjmand, N ; Malekipour, F ; Parnianpour, M ; Sharif University of Technology
    Abstract
    In spite of earlier experimental and modeling studies, the relative role of the intra-abdominal pressure (IAP) in spine mechanics has remained controversial. This study employs simple analytical and finite element (FE) models of the spine and its surrounding structures to investigate the contribution of IAP to spinal loading and stability. The analytical model includes the abdominal cavity surrounded by muscles, lumbar spine, rib cage and pelvic ring. The intra-abdominal cavity and its surrounding muscles are represented by a thin deformable cylindrical membrane. Muscle activation levels are simulated by changing the Young's modulus of the membrane in the direction of muscle fibers, yielding... 

    Viscoelastic-based approach to evaluate low temperature performance of asphalt binders

    , Article Construction and Building Materials ; Volume 128 , 2016 , Pages 384-398 ; 09500618 (ISSN) Jahanbakhsh, H ; Karimi, M. M ; Moghadas Nejad, F ; Jahangiri, B ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    Through the strategic highway research program (SHRP) project, time-temperature superposition (TTS) was used to reduce the loading time of bending beam rheometer (BBR) test. Based on TTS, stiffness of the asphalt binder after a two-hour loading time is similar to that after 60 s at 10 °C above. This study attempted to evaluate the TTS validity using finite element (FE) method by developing master curves in a broad range of low temperatures. The results indicated that TTS was neither valid for modified asphalt binders nor for neat binder. Also, in addition to the loading time dependency of m-value, limiting values of stiffness and m-value find no rheological acceptance. As a remedy, thermally... 

    An analytical approach in prediction of necking and suitable load path in tube hydroforming by using the strain gradient

    , Article SAE Technical Papers, 20 April 2009 through 20 April 2009, Detroit, MI ; 2009 Assempour, A ; Masoumi, E ; Safikhani, A. R ; Hashemi, R ; Abrinia, K ; Sharif University of Technology
    Abstract
    A theoretical forming limit stress diagram (FLSD) for necking prediction which is based on the strain gradient theory of plasticity in conjunction with the M-K approach was represented and used in tube hydroforming. This approach introduces an internal length scale into conventional constitutive equations and takes into account the effects of deformation inhomogeneity and material softening. The nonlinear second order ordinary differential equation of the thickness of tube has been solved by collocation method. It has been shown that this method overcomes the imperfection sensitivity encountered in the conventional M-K method. The predicted FLSD has been compared with published experimental... 

    Vibration based damage detection in smart non-uniform thickness laminated composite beams

    , Article TIC-STH'09: 2009 IEEE Toronto International Conference - Science and Technology for Humanity, 26 September 2009 through 27 September 2009, Toronto, ON ; 2009 , Pages 176-181 ; 9781424438785 (ISBN) Ghaffari, H ; Saeedi, E ; Zabihollah, A ; Ahmadi, R ; Sharif University of Technology
    Abstract
    Laminated composite beams with non-uniform thickness are being used as primary structural elements in a wide range of advanced engineering applications. Tapered composite structures, formed by terminating some of the plies, create geometry and material discontinuities that act as sources for delamination initiation and propagation. Any small damage or delamination in these structures can progress rapidly without any visible external signs. Due to this reason early detection of damage in these systems during their service life is receiving increasing attention. The presence of a crack in a component or structure leads to changes in its global dynamic characteristics results in decreases in... 

    Modeling and validation of a detailed FE viscoelastic lumbar spine model for vehicle occupant dummies

    , Article Computers in Biology and Medicine ; Volume 99 , 2018 , Pages 191-200 ; 00104825 (ISSN) Amiri, S ; Naserkhaki, S ; Parnianpour, M ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    The dummies currently used for predicting vehicle occupant response during frontal crashes or whole-body vibration provide insufficient information about spinal loads. Although they aptly approximate upper-body rotations in different loading scenarios, they overlook spinal loads, which are crucial to injury assessment. This paper aims to develop a modified dummy finite element (FE) model with a detailed viscoelastic lumbar spine. This model has been developed and validated against in-vitro and in-silico data under different loading conditions, and its predicted ranges of motion (RoM) and intradiscal pressure (IDP) maintain close correspondence with the in-vitro data. The dominant frequency... 

    Effect of whole-body vibration and sitting configurations on lumbar spinal loads of vehicle occupants

    , Article Computers in Biology and Medicine ; Volume 107 , 2019 , Pages 292-301 ; 00104825 (ISSN) Amiri, S ; Naserkhaki, S ; Parnianpour, M ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    Whole-body vibration (WBV) has been identified as one of the serious risk factors leading to spinal disorders, particularly in professional drivers. Although the influential factors in this area have been investigated epidemiologically, finite element (FE) modeling can efficiently help us better understand the problem. In this study, a modified HYBRID III dummy FE model which was enhanced by detailed viscoelastic discs in the lumbar region was utilized to simulate the effect of WBV on lumbar spine loads. Spinal responses to the vertical sinusoidal vibrations of a generic seat were obtained and spinal injury risk factors were calculated. Effects of variation of excitation frequencies, three... 

    Modeling, simulation, and optimal initiation planning for needle insertion into the liver

    , Article Journal of Biomechanical Engineering ; Volume 132, Issue 4 , 2010 ; 01480731 (ISSN) Sharifi Sedeh, R ; Ahmadian, M. T ; Janabi Sharifi, F ; Sharif University of Technology
    2010
    Abstract
    Needle insertion simulation and planning systems (SPSs) will play an important role in diminishing inappropriate insertions into soft tissues and resultant complications. Difficulties in SPS development are due in large part to the computational requirements of the extensive calculations in finite element (FE) models of tissue. For clinical feasibility, the computational speed of SPSs must be improved. At the same time, a realistic model of tissue properties that reflects large and velocity-dependent deformations must be employed. The purpose of this study is to address the aforementioned difficulties by presenting a cost-effective SPS platform for needle insertions into the liver. The study...