Loading...
Search for: feed-forward-controllers
0.007 seconds

    Design aspects for feed-forward multiple-input active noise controllers

    , Article Iranian Journal of Science and Technology, Transaction B: Technology ; Volume 26, Issue 3 , 2002 , Pages 407-418 ; 03601307 (ISSN) Esmailzadeh, E ; Ohadi, A. R ; Sharif University of Technology
    Shiraz University  2002
    Abstract
    The use of adaptive feed-forward controllers has proven to be a very successful strategy for controlling noise and vibration in a variety of applications. One reason is that the feed-forward controller is an open loop controller, which can be designed to cancel the undesired noise in a position with any accuracy. However, the feed-forward controller requires an input signal, called a reference signal, correlated to the noise source. Consequently, a single reference controller can only reduce noise radiated from a single noise source. In many applications, there is a need to attenuate noise produced by several noise sources. In this paper, three different structures, single, modulating and... 

    Model predictive control of blood sugar in patients with type-1 diabetes

    , Article Optimal Control Applications and Methods ; Volume 37, Issue 4 , 2016 , Pages 559-573 ; 01432087 (ISSN) Abedini Najafabadi, H ; Shahrokhi, M ; Sharif University of Technology
    John Wiley and Sons Ltd 
    Abstract
    In this article, two adaptive model predictive controllers (AMPC) are applied to regulate the blood glucose in type 1 diabetic patients. The first controller is constructed based on a linear model, while the second one is designed by using a nonlinear Hammerstein model. The adaptive version of these control schemes is considered to make them more robust against model mismatches and external disturbances. The least squares method with forgetting factor is used to update the model parameters. For simulation study, two well-known mathematical models namely, Puckett and Hovorka which describe the dynamical behavior of patient's body have been selected. The performances and robustness of the... 

    Precise position control of shape memory alloy actuator using inverse hysteresis model and model reference adaptive control system

    , Article Mechatronics ; Volume 23, Issue 8 , December , 2013 , Pages 1150-1162 ; 09574158 (ISSN) Zakerzadeh, M. R ; Sayyaadi, H ; Sharif University of Technology
    2013
    Abstract
    Position control of Shape Memory Alloy (SMA) actuators has been a challenging topic during the last years due to their nonlinearities in the governing physical equations as well as their hysteresis behaviors. Using the inverse of phenomenological hysteresis model in order to compensate the input-output hysteresis behavior of these actuators shows the effectiveness of this approach. In this paper, in order to control the tip deflection of a large deformation flexible beam actuated by an SMA actuator wire, a feedforward-feedback controller is proposed. The feedforward part of the proposed control system, maps the beam deflection into SMA temperature, is based on the inverse of the generalized... 

    A robust two-degree-of-freedom control strategy for an islanded microgrid

    , Article IEEE Transactions on Power Delivery ; Volume 28, Issue 3 , 2013 , Pages 1339-1347 ; 08858977 (ISSN) Babazadeh, M ; Karimi, H ; Sharif University of Technology
    2013
    Abstract
    This paper presents a new robust control strategy for an islanded microgrid in the presence of load unmodeled dynamics. The microgrid consists of parallel connection of several electronically interfaced distributed generation units and a local load. The load is parametrically uncertain and topologically unknown and, thus, is the source of unmodeled dynamics. The objective is to design a robust controller to regulate the load voltage in the presence of unmodeled dynamics. To achieve the objective, the problem is first characterized by a two-degree-of-freedom (2DOF) feedback-feedforward controller. The 2DOF control design problem is then transformed to a nonconvex optimization problem.... 

    Experimental comparison of some phenomenological hysteresis models in characterizing hysteresis behavior of shape memory alloy actuators

    , Article Journal of Intelligent Material Systems and Structures ; Volume 23, Issue 12 , 2012 , Pages 1287-1309 ; 1045389X (ISSN) Zakerzadeh, M. R ; Sayyaadi, H ; Sharif University of Technology
    SAGE  2012
    Abstract
    Among the phenomenological hysteresis models, the Preisach model, Krasnosel'skii-Pokrovskii model, and Prandtl-Ishlinskii model have found extensive applications for modeling hysteresis in shape memory alloys and other smart actuators. Since the mathematical complexity of the identification and inversion problem depends directly on the type of phenomenological hysteresis modeling method, choosing a proper phenomenological model among the mentioned models for modeling the hysteretic behavior of shape memory alloy actuators is a task of crucial importance. Moreover, the accuracy of the hysteresis modeling method in characterizing shape memory alloy hysteretic behavior consequently affects the... 

    Position control of shape memory alloy actuator based on the generalized Prandtl-Ishlinskii inverse model

    , Article Mechatronics ; Volume 22, Issue 7 , 2012 , Pages 945-957 ; 09574158 (ISSN) Sayyaadi, H ; Zakerzadeh, M. R ; Sharif University of Technology
    2012
    Abstract
    Hysteresis and significant nonlinearities in the behavior of Shape Memory Alloy (SMA) actuators encumber effective utilization of these actuator. Due to these effects, the position control of SMA actuators has been a great challenge in recent years. Literature review of the research conducted in this area shows that using the inverse of the phenomenological hysteresis models can compensate the hysteresis of these actuators effectively. But, inverting some of these models, such as Preisach model, is numerically a complex task. However, the generalized Prandtl-Ishlinskii model is analytically invertible, and therefore can be implemented conveniently as a feedforward controller for compensating...