Loading...
Search for: feed-speed
0.01 seconds

    Pore Scale Experimental Investigation of The Effective Parameters on the Preformed Particle Gels Transport Mechanisms in Fractured Porous Media

    , M.Sc. Thesis Sharif University of Technology Afsharpour, Sina (Author) ; Fatemi, Mobeen (Supervisor) ; Ghazanfari, Mohammad Hossein (Supervisor)
    Abstract
    Recognizing the preformed particle gel (PPG) transport mechanisms in fracture and the effective parameters on them, is a necessary knowledge to design a successful gel treatment operation. In this research the transport behavior of PPGs was investigated in two fractured micro-models. During PPG propagation in fracture, the gel dehydration causes to produce a large filtrate volume and sweep the matrix oil. In the fracture/matrix interface, the gel particles can deform, break or shrink, then penetrate a few millimeters into matrix pores and form an impermeable gel cake, which is the main mechanism of conformance control. The effective parameters on PPG transport behavior such as Nano-silica... 

    Control of gas metal arc welding by an extended DMC

    , Article Proceedings of the IEEE International Conference on Control Applications ; 2012 , Pages 1430-1434 ; 9781467345033 (ISBN) Sartipizadeh, H ; Haeri, M ; Sharif University of Technology
    Abstract
    Efficient control of gas metal arc welding process enables us to have high quality products in consequence of achieving high quality weld. In this paper, an extended dynamic matrix controller is designed and applied on the gas metal arc welding process, which is considered as a nonlinear multi-inputs multi-outputs system. In order to reach a high quality weld, the outputs, welding current and arc length, are effectively controlled by open circuit voltage and wire feed speed. The structure and performance of the proposed controller are discussed in detail, and then a set of simulation results is presented to verify its efficiencies  

    Ultrasonic-assisted grinding of Ti6Al4V alloy

    , Article Procedia CIRP ; Volume 1, Issue 1 , 2012 , Pages 353-358 ; 22128271 (ISSN) Nik, M. G ; Movahhedy, M. R ; Akbari, J ; Sharif University of Technology
    2012
    Abstract
    In conventional grinding of hard to cut materials such as Ti6Al4V alloys, surface burning, redeposition and adhesion of chips to the grinding wheel and workpeice occur visibly unless it is carried out at low speeds and with high volume of cutting fluid. Ultrasonic assisted grinding is an efficient machining process which improves the machinability of hard-to-cut materials by changing the kinematics of the process. In this research, the effect of imposition of ultrasonic vibration on the grinding of Ti6Al4V alloy is studied. Longitudinal vibration at ultrasonic frequency range (20 kHz) is applied on the workpiece and machining forces and surface roughness are compared between conventional...