Loading...
Search for: fentanyl
0.004 seconds

    Study of Conformational of Fentanyl by Quantum Mechanic Methods

    , M.Sc. Thesis Sharif University of Technology Malekjalali, Mahshid (Author) ; Tafazzoli, Mohsen (Supervisor)
    Abstract
    The study of energy and structure of fentanyl was performed by using quantum mechanical calculations method of Density Functional Theory(DFT) at the computational level B3 L YP and the basis set 6-311++G^(**). Proton-proton and proton-carbon coupling constants were computed around dihedral angles  and . All Karplas equation indicating the relation between coupling constants (namely 〖(_^"1" )"J" 〗_"CH" ^ ، 〖(_^"2" )"J" 〗_"HH" ^ ، 〖(_^"2" )"J" 〗_"CH" ^ ، 〖(_^"2" )"J" 〗_"CH" ^ ، 〖(_^"3" )"J" 〗_"CH" ^ ، 〖(_^"3" )"J" 〗_"HH" ^ and appropriate dihedral angles were extracted. The impact of three water solvents, dimethyl sulfoxide, and carbon tetrachloride with different polarity on the values of... 

    Determination of fentanyl in human plasma by head-space solid-phase microextraction and gas chromatography-mass spectrometry

    , Article Journal of Pharmaceutical and Biomedical Analysis ; Volume 43, Issue 5 , 2007 , Pages 1763-1768 ; 07317085 (ISSN) Bagheri, H ; Es-haghi, A ; Khalilian, F ; Rouini, M. R ; Sharif University of Technology
    2007
    Abstract
    A head-space solid-phase microextraction (HS-SPME) method coupled to GC-MS was developed to extract fentanyl from human plasma. The protein binding was reduced by acidification and, eventually, the sample was deproteinized with trichloroacetic acid. The parameters influencing adsorption (extraction time, temperature, pH and salt addition) and desorption (desorption time and temperature) of the analyte on the fibre were investigated and validated for method development. The developed method proved to be rapid, simple, easy and inexpensive and offers high sensitivity and reproducibility. Linear range was obtained from 0.1 ng/ml to 2 μg/ml. The limit of detection was 0.03 ng/ml while an... 

    Challenges and future prospects for the delivery of biologics: oral mucosal, pulmonary, and transdermal routes

    , Article AAPS Journal ; Volume 19, Issue 3 , 2017 , Pages 652-668 ; 15507416 (ISSN) Morales, J. O ; Fathe, K. R ; Brunaugh, A ; Ferrati, S ; Li, S ; Montenegro Nicolini, M ; Mousavikhamene, Z ; McConville, J. T ; Prausnitz, M. R ; Smyth, H. D. C ; Sharif University of Technology
    Springer New York LLC  2017
    Abstract
    Biologic products are large molecules such as proteins, peptides, nucleic acids, etc., which have already produced many new drugs for clinical use in the last decades. Due to the inherent challenges faced by biologics after oral administration (e.g., acidic stomach pH, digestive enzymes, and limited permeation through the gastrointestinal tract), several alternative routes of administration have been investigated to enable sufficient drug absorption into systemic circulation. This review describes the buccal, sublingual, pulmonary, and transdermal routes of administration for biologics with relevant details of the respective barriers. While all these routes avoid transit through the...