Loading...
Search for: fenton-like-reactions
0.006 seconds

    Advancement in Fenton-like reactions using PVA coated calcium peroxide/FeS system: Pivotal role of sulfide ion in regenerating the Fe(II) ions and improving trichloroethylene degradation

    , Article Journal of Environmental Chemical Engineering ; Volume 9, Issue 1 , 2021 ; 22133437 (ISSN) Ali, M ; Zhang, X ; Idrees, A ; Tariq, M ; Danish, M ; Farooq, U ; Shan, A ; Jiang, X ; Huang, J ; Lyu, S ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    This study demonstrated the prolonged benefits of polyvinyl-coated calcium peroxide (PVA@CP) in Fe(II)/nFeS mediated Fenton-like reaction. PVA@CP was prepared by a coating of PVA on calcium peroxide (CP) and synthesized nano-sized iron sulfide (nFeS) was characterized by scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-TEM) with energy dispersive spectroscopy (EDS) elemental mapping, X-ray diffractometry (XRD), X-ray photoelectron spectroscopy (XPS), inductively coupled plasma optical emission spectroscopy (ICP-OES) and Fourier transmission infrared (FTIR) techniques. Trichloroethylene (TCE) degradation in various oxic environments (H2O2, CP, or... 

    Advancement in Fenton-like reactions using PVA coated calcium peroxide/FeS system: Pivotal role of sulfide ion in regenerating the Fe(II) ions and improving trichloroethylene degradation

    , Article Journal of Environmental Chemical Engineering ; Volume 9, Issue 1 , 2021 ; 22133437 (ISSN) Ali, M ; Zhang, X ; Idrees, A ; Tariq, M ; Danish, M ; Farooq, U ; Shan, A ; Jiang, X ; Huang, J ; Lyu, S ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    This study demonstrated the prolonged benefits of polyvinyl-coated calcium peroxide (PVA@CP) in Fe(II)/nFeS mediated Fenton-like reaction. PVA@CP was prepared by a coating of PVA on calcium peroxide (CP) and synthesized nano-sized iron sulfide (nFeS) was characterized by scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-TEM) with energy dispersive spectroscopy (EDS) elemental mapping, X-ray diffractometry (XRD), X-ray photoelectron spectroscopy (XPS), inductively coupled plasma optical emission spectroscopy (ICP-OES) and Fourier transmission infrared (FTIR) techniques. Trichloroethylene (TCE) degradation in various oxic environments (H2O2, CP, or... 

    Unveiling the catalytic ability of carbonaceous materials in Fenton-like reaction by controlled-release CaO2 nanoparticles for trichloroethylene degradation

    , Article Journal of Hazardous Materials ; Volume 416 , 2021 ; 03043894 (ISSN) Ali, M ; Tariq, M ; Sun, Y ; Huang, J ; Gu, X ; Ullah, S ; Nawaz, M. A ; Zhou, Z ; Shan, A ; Danish, M ; Lyu, S ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    Carbonaceous materials (CMs) have been applied extensively for enhancing the catalytic performance of environmental catalysts, however, the self-catalytic mechanism of CMs for groundwater remediation is rarely investigated. Herein, we unveiled the catalytic ability of various CMs via Fe(III) reduction through polyvinyl alcohol-coated calcium peroxide nanoparticles (PVA@nCP) for trichloroethylene (TCE) removal. Among selected CMs (graphite (G), biochar (BC) and activated carbon (AC)), BC and AC showed enhancement of TCE removal of 89% and 98% via both adsorption and catalytic degradation. BET and SEM analyses showed a higher adsorption capacity of AC (27.8%) than others. The generation of... 

    Unveiling the catalytic ability of carbonaceous materials in Fenton-like reaction by controlled-release CaO2 nanoparticles for trichloroethylene degradation

    , Article Journal of Hazardous Materials ; Volume 416 , 2021 ; 03043894 (ISSN) Ali, M ; Tariq, M ; Sun, Y ; Huang, J ; Gu, X ; Ullah, S ; Nawaz, M. A ; Zhou, Z ; Shan, A ; Danish, M ; Lyu, S ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    Carbonaceous materials (CMs) have been applied extensively for enhancing the catalytic performance of environmental catalysts, however, the self-catalytic mechanism of CMs for groundwater remediation is rarely investigated. Herein, we unveiled the catalytic ability of various CMs via Fe(III) reduction through polyvinyl alcohol-coated calcium peroxide nanoparticles (PVA@nCP) for trichloroethylene (TCE) removal. Among selected CMs (graphite (G), biochar (BC) and activated carbon (AC)), BC and AC showed enhancement of TCE removal of 89% and 98% via both adsorption and catalytic degradation. BET and SEM analyses showed a higher adsorption capacity of AC (27.8%) than others. The generation of...