Loading...
Search for: ferrite-pearlite
0.008 seconds

    Strain localization and deformation behavior in ferrite-pearlite steel unraveled by high-resolution in-situ testing integrated with crystal plasticity simulations

    , Article International Journal of Mechanical Sciences ; Volume 200 , 2021 ; 00207403 (ISSN) Isavand, S ; Assempour, A ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    This paper attempts to study the microstructural stress-strain evolution and strain localization in the ferrite-pearlite steel by high-resolution experimental-numerical integrated testing. Ferrite crystal orientations measured by electron backscatter diffraction (EBSD) were mapped onto precise scanning electron microscopy (SEM) micrographs of ferrite and cementite lamellar morphologies. Furthermore, in-situ SEM tensile testing was employed to map strains during the deformation using digital image correlation (DIC) at high spatial resolutions. Finally, spectral solver-based crystal plasticity (CP) simulations loaded by the local SEM-DIC boundary conditions were performed and compared to the... 

    Crystal plasticity modeling and experimental characterization of strain localization and forming limits in ferrite-pearlite steels

    , Article International Journal of Solids and Structures ; Volume 233 , December , 2021 ; 00207683 (ISSN) Isavand, S ; Kardan Halvaei, M ; Assempour, A ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    The main objective of this study is to predict the deformation behavior, strain localization, and forming limits of ferrite-pearlite steels by incorporating the contributions of the microstructural characteristics and mechanical properties of the underlying microstructure. A realistic microstructure-based micromechanical approach in the framework of the crystal plasticity (CP) model was carried out using the periodic representative volume element (RVE) generated from the scanning electron microscopy (SEM) image. The homogenized stress–strain curve of the realistic RVE was validated with the experimental data with an error of less than 6.71% at large strains. Afterward, the initial... 

    Investigations of the failure in boilers economizer tubes used in power plants

    , Article Journal of Materials Engineering and Performance ; Volume 22, Issue 9 , 2013 , Pages 2691-2697 ; 10599495 (ISSN) Moakhar, R. S ; Mehdipour, M ; Ghorbani, M ; Mohebali, M ; Koohbor, B ; Sharif University of Technology
    2013
    Abstract
    In this study, failure of a high pressure economizer tube of a boiler used in gas-Mazut combined cycle power plants was studied. Failure analysis of the tube was accomplished by taking into account visual inspection, thickness measurement, and hardness testing as well as microstructural observations using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and x-ray diffraction (XRD). Optical microscopy images indicate that there is no phase transformation during service, and ferrite-pearlite remained. The results of XRD also revealed Iron sulfate (FeSO4) and Iron hydroxide sulfate (FeOH(SO4)) phases formed on the steel surface. A considerable amount of Sulfur was also... 

    Static strain aging behavior of a manganese-silicon steel after single and multi-stage straining

    , Article Journal of Materials Engineering and Performance ; Volume 25, Issue 3 , 2016 , Pages 1047-1055 ; 10599495 (ISSN) Seraj, P ; Serajzadeh, S ; Sharif University of Technology
    Springer New York LLC  2016
    Abstract
    In this work, static strain aging behavior of an alloy steel containing high amounts of silicon and manganese was examined while the influences of initial microstructure and pre-strain on the aging kinetics were evaluated as well. The rate of strain aging in a low carbon steel was also determined and compared with that occurred in the alloy steel. The rates of static strain aging in the steels were defined at room temperature and at 95 °C by means of double-hit tensile testing and hardness measurements. In addition, three-stage aging experiments at 80 °C were carried out to estimate aging behavior under multi-pass deformation processing. The results showed that in-solution manganese and... 

    Intercritical heat treatment temperature dependence of mechanical properties and corrosion resistance of dual phase steel

    , Article Materials Research ; Volume 22, Issue 1 , 2019 ; 15161439 (ISSN) Abedini, O ; Behroozi, M ; Marashi, P ; Ranjbarnodeh, E ; Pouranvari, M ; Sharif University of Technology
    Universidade Federal de Sao Carlos  2019
    Abstract
    This study investigated the effect of intercritical heat treatment temperature on the tensile properties, work hardening and corrosion resistance of dual phase steel. Ferrite-martensite dual phase steel with different martensite volume fractions were obtained after heat treatment at different intercritical temperatures. Microstructure, mechanical properties of steel were measured and the corrosion resistance was evaluated via polarization test. Tensile strength of the specimens increased by increasing the martensite volume fraction up to 48.2%. Further increase in martensite volume fraction led to decrease in tensile strength. Work hardening behavior analyzing showed that in DP steel with...