Loading...
Search for: field-emission-cathodes
0.006 seconds

    A method for reducing the complexity, and increasing the accuracy of field emission electron gun simulations

    , Article Vacuum ; Volume 95 , 2013 , Pages 50-65 ; 0042207X (ISSN) Yasrebi, N ; Rashidian, B ; Sharif University of Technology
    2013
    Abstract
    Problems regarding simulation of field emitter array (FEA) electron guns are discussed. A simple method is proposed to significantly reduce computational requirements such as computation power, system memory, and time of FEA electron gun simulation and modeling. The method can be applied to any numerical solver regardless of its meshing technique. In order to extract field emission parameter from any experimental cathode I-V curve, a partly numerical algorithm, which uses the presented truncation method at the heart of its solver, is proposed. The proposed method and algorithm are applied to a number of examples, including a double-gated FEA problem, and its effectiveness in terms of error... 

    Growth of Na0.3WO3 nanorods for the field emission application

    , Article Journal of Physics D: Applied Physics ; Volume 42, Issue 20 , 2009 ; 00223727 (ISSN) Azimirad, R ; Khademi, A ; Akhavan, O ; Zaker Moshfegh, A. R ; Sharif University of Technology
    2009
    Abstract
    Na0.3WO3 1D nanostructure forms (nanorods and nanobelts) were grown by a solid-liquid-solid mechanism from a 40 nm sputtered tungsten film deposited on a soda-lime substrate and annealed at 700 °C in a tubular furnace in N2 ambient. The morphology, structure, composition and chemical state of the prepared nanostructures were characterized by SEM, XRD, TEM, SAED and XPS measurements. The Na0.3WO3 1D nanostructures were found to have a cubic crystalline structure and grown along the [0 0 1] direction. The nanorods are a few micrometres in length and about 50 nm in diameter. The field-emission application of the prepared samples at different distances between the cathode and the anode was... 

    Influence of Substrate, Additives, and Pulse Parameters on Electrodeposition of Gold Nanoparticles from Potassium Dicyanoaurate

    , Article Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science ; Volume 46, Issue 6 , December , 2015 , Pages 2584-2592 ; 10735615 (ISSN) Vahdatkhah, P ; Sadrnezhaad, S. K ; Sharif University of Technology
    Springer Boston  2015
    Abstract
    Gold nanoparticles (AuNPs) of less than 50 nm diameter were electrodeposited from cyanide solution by pulsating electric current on modified copper and indium tin oxide (ITO) films coated on glass. Morphology, size, and composition of the deposited AuNPs were studied by X-ray photoelectron spectroscopy, atomic force microscopy, and field emission scanning electron microscopy. Effects of peak current density, pulse frequency, potassium iodide and cysteine on grain size, and morphology of the AuNPs were determined. Experiments showed that cathode current efficiency increases with the pulse frequency and the iodide ion. Size of the AuNPs increased with the current density. The number of... 

    Ball mill assisted synthesis of Na3MnCO3PO4 nanoparticles anchored on reduced graphene oxide for sodium ion battery cathodes

    , Article Electrochimica Acta ; Volume 220 , 2016 , Pages 683-689 ; 00134686 (ISSN) Hassanzadeh, N ; Sadrnezhaad, S. K ; Chen, G ; Sharif University of Technology
    Elsevier Ltd 
    Abstract
    Na3MnCO3PO4 (NMCP) particles were synthesized via ball milling of Mn(NO3)2.4H2O, Na2HPO4.2H2O and Na2CO3.H2O powders. The particles were anchored onto reduced graphene oxide (rGO) sheets during hydrothermal reduction process under stirring. Materials produced were characterized by x-ray diffraction (XRD), Raman spectroscopy, field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), thermogravimetric (TG) measurement and galvanostatic charge/discharge tests. Results showed that dissolution of ball milling products in DI water is an effective method for separation of NMCP from byproducts. Best milling time for production of pure NMCP of minimum particle... 

    Preparation of sulfur micro-particles suitable for lithium sulfur batteries using sulfur vapor deposition

    , Article Materials Research Express ; Volume 6, Issue 10 , 2019 ; 20531591 (ISSN) Hakimi, M ; Borzabadi Farahani, A ; Sanaee, Z ; Ghasemi, S ; Mohajerzadeh, S ; Sharif University of Technology
    Institute of Physics Publishing  2019
    Abstract
    The current paper reports the deposition of sulfur micro-particles using sulfur vapor deposition (SVD). Sulfur particles in size of 5 to 45 μm were deposited on a stainless steel substrate to be used as the cathode with porous structure in lithium sulfur (Li-S) batteries. Mass loading of about 0.5 mg cm-2 was obtained from this pure sulfur cathode. The structure of this binder-free cathode was characterized by field emission scanning electron microscopy (FESEM), x-ray spectroscopy (EDS), and x-ray diffraction (XRD). The electrochemical performance of the battery with two different organic liquid ether- and carbonate-based electrolytes was investigated and the results demonstrated that the... 

    A novel high gain extendable dc-dc bidirectional boost-buck converter

    , Article 237th ECS Meeting with the 18th International Meeting on Chemical Sensors, IMCS 2020, 10 May 2020 through 14 May 2020 ; Volume 97, Issue 7 , 2020 , Pages 845-856 Hosseini H., S. M ; Siavash Moakhar, R ; Soleimani, F ; Goudarzi, A ; Sadrnezhaad, S. K ; Sharif University of Technology
    Institute of Physics Publishing  2020
    Abstract
    In-situ deposition of cupric oxide (CuO) thin films on fluorine-doped tin oxide is performed through a rapid microwave-assisted method. The duration of microwave (MW) irradiation is optimized in order to prepare efficient and stable photocathodes for photoelectrochemical (PEC) water splitting. We obtain CuO with a unique morphology consisted of intermingled nanosheets. We evaluate PEC performance of the photocathodes through Linear Sweep Voltammetry (LSV) and current stability analyses. The highest achieved photocurrent density is -1.15 mA.cm-2 at 0 V vs. RHE for the sample MW-irradiated for 60 min. This value is comparable or superior to several other CuO-based photocathodes prepared by... 

    Photoelectrochemical water-splitting using CuO-Based electrodes for hydrogen production: a review

    , Article Advanced Materials ; Volume 33, Issue 33 , 2021 ; 09359648 (ISSN) Siavash Moakhar, R ; Hosseini Hosseinabad, S. M ; Masudy Panah, S ; Seza, A ; Jalali, M ; Fallah Arani, H ; Dabir, F ; Gholipour, S ; Abdi, Y ; Bagheri Hariri, M ; Riahi Noori, N ; Lim, Y. F ; Hagfeldt, A ; Saliba, M ; Sharif University of Technology
    John Wiley and Sons Inc  2021
    Abstract
    The cost-effective, robust, and efficient electrocatalysts for photoelectrochemical (PEC) water-splitting has been extensively studied over the past decade to address a solution for the energy crisis. The interesting physicochemical properties of CuO have introduced this promising photocathodic material among the few photocatalysts with a narrow bandgap. This photocatalyst has a high activity for the PEC hydrogen evolution reaction (HER) under simulated sunlight irradiation. Here, the recent advancements of CuO-based photoelectrodes, including undoped CuO, doped CuO, and CuO composites, in the PEC water-splitting field, are comprehensively studied. Moreover, the synthesis methods,... 

    In-situ hydrothermal synthesis of Na3MnCO3PO4/rGO hybrid as a cathode for Na-ion battery

    , Article Electrochimica Acta ; Volume 208 , 2016 , Pages 188-194 ; 00134686 (ISSN) Hassanzadeh, N ; Sadrnezhaad, S. K ; Chen, G ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    Novel Na3MnCO3PO4 (NMCP)/reduced graphene oxide (rGO) nanocomposite was successfully synthesized via one-step hydrothermal method. The produced materials were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), thermogravimetry (TG), galvanostatic charge/discharge test and inductively coupled plasma optical emission spectroscopy (ICP-OES). Obtained results indicate the formation of ∼25 nm NMCP nanoparticles randomly distributed on rGO sheets. As a promising cathode material for Na-ion batteries, the hybrids deliver gravimetric discharge capacities of... 

    Stable and efficient CuO based photocathode through oxygen-rich composition and Au-Pd nanostructure incorporation for solar-hydrogen production

    , Article ACS Applied Materials and Interfaces ; Volume 9, Issue 33 , 2017 , Pages 27596-27606 ; 19448244 (ISSN) Masudy Panah, S ; Siavash Moakhar, R ; Chua, C. S ; Kushwaha, A ; Dalapati, G. K ; Sharif University of Technology
    Abstract
    Enhancing stability against photocorrosion and improving photocurrent response are the main challenges toward the development of cupric oxide (CuO) based photocathodes for solar-driven hydrogen production. In this paper, stable and efficient CuO-photocathodes have been developed using in situ materials engineering and through gold-palladium (Au-Pd) nanoparticles deposition on the CuO surface. The CuO photocathode exhibits a photocurrent generation of ∼3 mA/cm2 at 0 V v/s RHE. Time-of-flight secondary ion mass spectrometry (TOF-SIMS) analysis and X-ray spectroscopy (XPS) confirm the formation of oxygen-rich (O-rich) CuO film which demonstrates a highly stable photocathode with retained... 

    Nickel-cobalt layered double hydroxide ultrathin nanosheets coated on reduced graphene oxide nonosheets/nickel foam for high performance asymmetric supercapacitors

    , Article International Journal of Hydrogen Energy ; 2017 ; 03603199 (ISSN) Shahrokhian, S ; Rahimi, S ; Mohammadi, R ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    Here in, for the first time, we report a new and simple procedure for preparing reduced graphene oxide/nickel-cobalt double layered hydroxide composite on the nickel foam (Ni-Co LDH/rGO/NF) via a fast and simple two-step electrochemical method including potentiostatic routes in the presence of CTAB as a cationic surfactant. Graphene oxide coated nickel foam prepared by simple immersion method. After that, the prepared electrode reduced electrochemically to obtain rGO/NF electrode. Finally, the rGO/NF electrode was used as cathode for electrodeposition of Ni-Co LDH in the presence of CTAB as cationic surfactant. The prepared electrodes were characterized by field emission scanning electron... 

    Nickel-cobalt layered double hydroxide ultrathin nanosheets coated on reduced graphene oxide nonosheets/nickel foam for high performance asymmetric supercapacitors

    , Article International Journal of Hydrogen Energy ; Volume 43, Issue 4 , 2018 , Pages 2256-2267 ; 03603199 (ISSN) Shahrokhian, S ; Rahimi, S ; Mohammadi, R ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    Here in, for the first time, we report a new and simple procedure for preparing reduced graphene oxide/nickel-cobalt double layered hydroxide composite on the nickel foam (Ni-Co LDH/rGO/NF) via a fast and simple two-step electrochemical method including potentiostatic routes in the presence of CTAB as a cationic surfactant. Graphene oxide coated nickel foam prepared by simple immersion method. After that, the prepared electrode reduced electrochemically to obtain rGO/NF electrode. Finally, the rGO/NF electrode was used as cathode for electrodeposition of Ni-Co LDH in the presence of CTAB as cationic surfactant. The prepared electrodes were characterized by field emission scanning electron...