Loading...
Search for: film-layers
0.004 seconds

    Dewetting of evaporating thin films over nanometer-scale topographies

    , Article Physical Review E - Statistical, Nonlinear, and Soft Matter Physics ; Vol. 90, issue. 1 , July , 2014 ; ISSN: 15393755 Akbarzadeh, A. M ; Moosavi, A ; Moghimi Kheirabadi, A ; Sharif University of Technology
    Abstract
    A lubrication model is used to study dewetting of an evaporating thin film layer over a solid substrate with a nanometer-scale topography. The effects of the geometry of the topography, the contact angle, the film thickness, and the slippage on the dewetting have been studied. Our results reveal that the evaporation enhances the dewetting process and reduces the depinning time over the topography. Also it is shown that the depinning time is inversely proportional to the slippage and increasing the contact angle may considerably reduce the depinning time, while the film thickness increases the depinning time  

    Sintering characterizations of Ag-nano film on silicon substrate

    , Article Advanced Materials Research ; Volume 829 , 2014 , Pages 342-346 ; ISSN: 10226680 ; ISBN: 9783037859070 Keikhaie, M ; Akbari, J ; Movahhedi, M. R ; Alemohammad, H ; Sharif University of Technology
    Abstract
    Nowadays, thin films have many applications in every field. So, in order to improve the performance of thin film devices, it is necessary to characterize their mechanical as well as electrical properties. In this research work we focus on the development of a model for the analysis of the mechanical and electrical properties of silver nanoparticles deposited on silicon substrates. The model consists of inter-particle diffusion modeling and finite element analysis. In this study, through the simulation of the sintering process, it is shown that how the geometry, density, and electrical resistance of the thin film layer are changed with sintering conditions. The model is also used to... 

    Theoretical analysis of polymeric and crystalline thick films melting with a single gold nanoparticle embedded in a transparent matrix under nanosecond pulsed laser excitation

    , Article Journal of Physics D: Applied Physics ; Volume 45, Issue 47 , 2012 ; 00223727 (ISSN) Rahimi, L ; Bahrampour, A. R ; Pepe, G. P ; Sharif University of Technology
    2012
    Abstract
    Optothermal properties of noble metal nanoparticles can be used in a wide range of applications. This paper presents the results of a theoretical study on the utilization of laser-induced heating of a gold nanoparticle (GNP) to melt a region of a transparent material with sub-wavelength spatial resolution. The considered system consists of a 10 or 15nm diameter GNP fixed inside a silica substrate. The silica surface is covered with a thick film of the transparent polymeric or crystalline material. The heating and melting processes are studied under a 7.5ns pulsed laser illumination. Calculations are conducted under three temperature limits, on the maximum temperature of the free electrons,... 

    Simulation of SO2 absorption in a venturi scrubber

    , Article Chemical Engineering Communications ; Volume 197, Issue 7 , Feb , 2010 , Pages 934-952 ; 00986445 (ISSN) Taheri, M ; Mohebbi, A ; Taheri, A ; Sharif University of Technology
    2010
    Abstract
    In this study, a three-dimensional mathematical model, based on a nonuniform droplet concentration distribution, has been developed to simulate gas absorption in a venturi scrubber. The mass transfer process was illustrated by assuming the liquid phase as a combination of droplets and film. The flow, just as the annular two-phase flow, includes a flow of liquid film layer on the walls and a flow of gas and liquid drops in the core. Peclet number was determined using experimental data reported by Viswanathan et al. (1984) for distribution of droplets across the cross section of the scrubber. The mathematical model for gas absorption was justified by comparing the theoretical predictions with...