Loading...
Search for: finite-time-stability
0.006 seconds

    A chattering-free finite-time robust synchronization scheme for uncertain chaotic systems

    , Article Iranian Journal of Science and Technology - Transactions of Mechanical Engineering ; Volume 43 , 2019 , Pages 995-1003 ; 22286187 (ISSN) Heidarzadeh, S ; Salarieh, H ; Sharif University of Technology
    Springer International Publishing  2019
    Abstract
    This paper addresses a simple chattering-free and finite-time convergent robust synchronization scheme for a general class of disturbed master and slave chaotic systems. Unlike traditional variable structure control schemes, the proposed controller does not directly include a switching function, and chattering is avoided. The term including switching function is the input of a low-pass filter where the filtered output is used in the controller. Also, numerical differentiation of master and slave state trajectories is not required to implement the controller. Stability of the proposed controller is established using a Lyapunov stability analysis and the finite-time convergence theories.... 

    Finite-Time guidance laws for landing process of a spacecraft subjected to disturbances

    , Article 2016 4th International Conference on Control, Instrumentation, and Automation, ICCIA 2016, 27 January 2016 through 28 January 2016 ; 2016 , Pages 296-300 ; 9781467387040 (ISBN) Abooee, A ; Moravej Khorasani, M ; Haeri, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2016
    Abstract
    This paper investigates the finite-Time landing of a spacecraft on a celestial target subjected to disturbances and air drag forces. Based on nonsingular fast terminal sliding mode control, a novel guidance law is designed to accomplish the landing goal within a specified finite time while the upper bound of disturbances is assumed to be known. Finally, a numerical example of the spacecraft landing problem is simulated by applying the proposed scheme. The obtained results illustrate that the designed guidance law can achieve the landing goal in the specified finite time  

    Free-chattering robust finite time tracking for connected double integrator nonlinear systems

    , Article 2016 4th International Conference on Control, Instrumentation, and Automation, ICCIA 2016, 27 January 2016 through 28 January 2016 ; 2016 , Pages 301-306 ; 9781467387040 (ISBN) Abooee, A ; Moravej Khorasani, M ; Haeri, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2016
    Abstract
    In this paper, a new form of generalized nonsingular fast terminal sliding mode control approach is proposed to provide the finite time tracking in connected chain of double integrator nonlinear systems subjected to additive bounded unknown uncertainties, disturbances, and internal interactions. The proposed approach presents an adjustable finite time for achieving the tracking goal which is a summation of two separate tunable times including finite reaching time and finite settling time. Tuning of the total finite time is done by adjusting arbitrary parameters in the control inputs and sliding surfaces. The high frequency switching of the control method is removed by applying a second order... 

    A new fast finite time fractional order adaptive sliding-mode control for a quadrotor

    , Article 7th International Conference on Control, Instrumentation and Automation, ICCIA 2021, 23 February 2021 through 24 February 2021 ; 2021 ; 9780738124056 (ISBN) Naderi Soorki, M ; Vedadi Moghaddam, T ; Emamifard, A ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2021
    Abstract
    Fast finite time adaptive sliding mode control of a quadrotor in the presence of uncertainties and unbounded external disturbances is dealt in this paper. To this end, a fractional order sliding surface is first defined and then, an adaptive sliding mode controller is designed to guarantee finite time stability with fast convergence of quadrotor states to the desired trajectory. In this controller, it is assumed that the upper bound of the model uncertainties and external disturbances is a nonlinear function with unknown coefficients. These coefficients are estimated via stable adaptive laws. Finite time stability of the closed-loop system is analyzed using Lyapunov theorem. Simulation... 

    Control of Nonlinear Systems With Predefined Output Transient Performance

    , M.Sc. Thesis Sharif University of Technology Kamal Amiri, Ali (Author) ; Shahrokhi, Mohammad (Supervisor)
    Abstract
    This project is aimed to design a controller for nonlinear systems that satisfy a prescribed performance while guaranteeing close-loop stability. To do this, the controller must be designed in such a way that the transient response of the system has had these performance indices and does not exceed them. These performance indices predefine some constraints for systems’ output.A comprehensive form for the model system, the unknown dynamics of the system, consideration of a variety of constraints on the system input, usage of the time-finite method for the residence time and consideration of just one tuning parameter to reduce the computation load, are among the other benefits for the proposed... 

    Global Finite Time Stabilization of a Class of Uncertain MIMO Nonlinear Systems

    , Article Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME ; Volume 138, Issue 2 , 2016 ; 00220434 (ISSN) Abooee, A ; Moravej Khorasani, M ; Haeri, M ; Sharif University of Technology
    American Society of Mechanical Engineers (ASME) 
    Abstract
    It is aimed to obtain global finite time stabilization of a class of uncertain multi-input-multi-output (MIMO) nonlinear systems in the presence of bounded disturbances by applying nonsingular terminal sliding mode controllers. The considered nonlinear systems consist of double integrator subsystems which interact with each other. In the proposed methods, new terminal sliding surfaces are introduced along with design of proper control inputs. The terminal sliding surfaces are defined such that the global finite time stability of sliding mode dynamic is attained. The control inputs are designed to steer the states into sliding motion within finite time and retain them on the terminal sliding... 

    Finite time-Lyapunov based approach for robust adaptive control of wind-induced oscillations in power transmission lines

    , Article Journal of Sound and Vibration ; Volume 371 , 2016 , Pages 19-34 ; 0022460X (ISSN) Ghabraei, S ; Moradi, H ; Vossoughi, G ; Sharif University of Technology
    Academic Press  2016
    Abstract
    Large amplitude oscillation of the power transmission lines, which is also known as galloping phenomenon, has hazardous consequences such as short circuiting and failure of transmission line. In this article, to suppress the undesirable vibrations of the transmission lines, first the governing equations of transmission line are derived via mode summation technique. Then, due to the occurrence of large amplitude vibrations, nonlinear quadratic and cubic terms are included in the derived linear equations. To suppress the vibrations, arbitrary number of the piezoelectric actuators is assumed to exert the actuation forces. Afterwards, a Lyapunov based approach is proposed for the robust adaptive...