Loading...
Search for: first-order-shears
0.007 seconds
Total 54 records

    Non-linear analysis of functionally graded sector plates with simply supported radial edges under transverse loading

    , Article Mechanics of Advanced Composite Structures ; Volume 6, Issue 1 , 2019 , Pages 65-74 ; 24234826 (ISSN) Fallah, F ; Karimi, M. H ; Sharif University of Technology
    Semnan University, Faculty of Mechanical Engineering  2019
    Abstract
    In this study, nonlinear bending of functionally graded (FG) circular sector plates with simply supported radial edges subjected to transverse mechanical loading has been investigated. Based on the first-order shear deformation plate theory with von Karman strain-displacement relations, the nonlinear equilibrium equations of sector plates are obtained. Introducing a stress function and a potential function, the governing equations which are five non-linear coupled equations with total order of ten are reformulated into three uncoupled ones including one linear edge-zone equation and two nonlinear interior equations with total order of ten. The uncoupling makes it possible to present... 

    Free-edge stresses in general cross-ply laminates

    , Article Scientia Iranica ; Vol. 21, issue. 2 , April , 2014 , p. 387-402 Yazdani Sarvestani, H ; Sharif University of Technology
    Abstract
    Within elasticity theory, the reduced form of a displacement field is obtained for general cross-ply composite laminates subjected to a bending moment. The firstorder shear deformation theory of plates and Reddy's layerwise theory are then utilized to determine the global deformation parameters and the local deformation parameters appearing in the displacement fields, respectively. For a special set of boundary conditions an elasticity solution is developed to verify the validity and accuracy of the layerwise theory. Finally, various numerical results are presented within the layerwise theory for edge-effect problems of several cross-ply laminates under the bending moment. The results... 

    Interlaminar stress analysis of general composite laminates

    , Article International Journal of Mechanical Sciences ; Volume 53, Issue 11 , 2011 , Pages 958-967 ; 00207403 (ISSN) Yazdani Sarvestani, H ; Yazdani Sarvestani, M ; Sharif University of Technology
    Abstract
    In this study, based on the reduced from of elasticity displacement field for a long laminate, an analytical method is established to exactly obtain the interlaminar stresses near the free edges of generally laminated composite plates under the extension and bending. The constant parameters, which describe the global deformation of a laminate, are properly computed by means of the improved first-order shear deformation theory. Reddys layerwise theory is subsequently utilized for analytical and numerical examinations of the boundary layer stresses within arbitrary laminated composite plates. A variety of numerical results are obtained for the interlaminar normal and shear stresses along the... 

    Natural frequency analysis of functionally graded material truncated conical shell with lengthwise material variation based on first-order shear deformation theory

    , Article Mechanics of Advanced Materials and Structures ; Volume 23, Issue 5 , 2016 , Pages 565-577 ; 15376494 (ISSN) Asanjarani, A ; Kargarnovin, M. H ; Satouri, S ; Satouri, A ; Sharif University of Technology
    Taylor and Francis Inc  2016
    Abstract
    Based on the first-order shear deformation theory, the free vibration of the functionally graded (FG) truncated conical shells is analyzed. The truncated conical shell materials are assumed to be isotropic and inhomogeneous in the longitudinal direction. The two-constituent FG shell consists of ceramic and metal. These constituents are graded through the length, from one end of the shell to the other end. Using Hamilton's principle the derived governing equations are solved using differential quadrature method. Fast rate of convergence of this method is tested and its advantages over other existing solver methods are observed. The primary results of this study were obtained for four... 

    Decoupled stability equation for buckling analysis of FG and multilayered cylindrical shells based on the first-order shear deformation theory

    , Article Composites Part B: Engineering ; Volume 154 , 2018 , Pages 225-241 ; 13598368 (ISSN) Fallah, F ; Taati, E ; Asghari, M ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    Based on the first-order shear deformation and Donnell's shell theory with von Karman non-linearity, one decoupled stability equation for buckling analysis of functionally graded (FG) and multilayered cylindrical shells with transversely isotropic layers subjected to various cases of combined thermo-mechanical loadings is developed. To this end, the equilibrium equations are uncoupled in terms of the transverse deflection, the force function and a new potential function. Using the adjacent equilibrium method, one decoupled stability equation which is an eighth-order differential equation in terms of transverse deflection is obtained and conveniently solved to present analytical expressions... 

    Free vibration of a functionally graded annular sector plate integrated with piezoelectric layers

    , Article Applied Mathematical Modelling ; Volume 79 , 2020 , Pages 341-361 Shahdadi, A ; Rahnama, H ; Sharif University of Technology
    Elsevier Inc  2020
    Abstract
    Based on the first order shear deformation theory, free vibration behavior of functionally graded (FG) annular sector plates integrated with piezoelectric layers is investigated. The distribution of electric potential along the thickness direction of piezoelectric layers which is assumed to be a combination of linear and sinusoidal functions, satisfies both open and closed circuit electrical boundary conditions. Through a reformulation of governing equations and harmonic motion assumption, a novel decoupling method is suggested to transform the six second order coupled partial differential equations of motion into two eighth order and fourth order equations. A Fourier series method is then... 

    Stress Analysis in Symmetric Composite Laminates Subjected to Shearing Load

    , M.Sc. Thesis Sharif University of Technology Mousanezhad Viyand, Davood (Author) ; Nosier, Asghar (Supervisor)
    Abstract
    In the present study, an analytical solution is developed to calculate the interlaminar stresses in long symmetric laminated composite plates subjected to shearing load. At first, upon the successive integrations of the strain-displacement relations and using the existing patterns in deformation of a long symmetric laminate, the general displacement field is extracted and simplified to the final form. Presented solution is based on a combined method containing the equivalent single-layer (ESL) theories beside the Reddy’s layerwise theory. In this method, the equivalent single-layer theories are utilized because of their simplicity and low computational efforts rather than the layerwise... 

    Panel Flutter Analysis of Cylindrical Constrained Layer Damping (CLD) Panels

    , M.Sc. Thesis Sharif University of Technology Sadeghmanesh, Mostafa (Author) ; Haddadpour, Hassan (Supervisor)
    Abstract
    The purpose of this study is to analytically study the aeroelastic characteristics of the cylindrical shells fully treated with passive constrained layer damping (PCLD) to indicate the effects of various parameters on the behavior of such structures. Constraining the viscoelastic layers increases the amount of dissipated energy and the bending stiffness of the structure without considerable change of the weight.
    A thin shell theory in conjunction with the Donell assumptions is employed for the shell and the constraining layer (CL) and the first order shear deformation theory (FSDT) is used for the viscoelastic layer to construct the model. The effects of rotary inertia and shear... 

    Free Vibration Analysis of Moderately Thick Rectangular Plate Made of Functionally Graded Material on Arbitrary Supports Using Extended Kantorovich Method

    , M.Sc. Thesis Sharif University of Technology Fallah, Ali (Author) ; Kargarnovin, Mohammad Hossein (Supervisor) ; Mohammadi Aghdam, Mohamamd (Supervisor)
    Abstract
    In this study, free vibration analysis of moderately thick rectangular FG plates with general boundary conditions is investigated. Governing equations of motion are obtained based on the Mindlin plate theory. A semi analytical solution is presented for the governing equations using extended Kantorovich method (EKM). Results are compared and validated with available results in the literature. Effects of different parameters such as boundary conditions, material and geometrical parameters on natural frequencies of the FG plates are investigated  

    Free Vibration Analysis of FG Annular Sector Plates Using Extended Kantrovich Method

    , M.Sc. Thesis Sharif University of Technology Garshasbi, Omid (Author) ; Fallah Rajabzadeh, Famida (Supervisor)
    Abstract
    In this study the free vibration of annular sector plates made of functional materials with using the extended Katrovich method is investigated for a variety of boundary conditions. For this purpose, based on the first order shear deformation theory and Hamilton's principle, equations of motion that they are five differential equations and coupled, are derived. Due to the difficulty of the equations obtained by applying extended kantrovich method on these equations, two ordinary differential equations obtained, the two categories combined fixed and simple boundary conditions will be solved by using generalized differential quadrature and in an iterative process system natural frequency is... 

    Dynamic Stability of Cylindrical Shells Made of Functionally-Graded Materials under Axial Follower Forces

    , M.Sc. Thesis Sharif University of Technology Torki Harchegani, Mohammad Ebrahim (Author) ; Kazemi, Mohammad Taghi (Supervisor)
    Abstract
    Due to major problems induced by delamination in laminated composites, functionally-graded materials (FGM) have been put to growing use in recent years. In the present research, dynamic stability of FGM cylindrical shells under axial follower loads is addressed. Loading was considered in three forms: concentrated (Beck’s problem), uniformly-distributed (Leipholz’s problem), and linearly-distributed (Hauger’s problem). In order to derive the governing equations, Love’s hypotheses and First-order Shear Theory (FST) were used. To solve the equations, polynomial mode shapes were used to approximate the displacements, and the extended Galerkin method was applied. The problem was solved for mild... 

    Bending Analysis of Rectangular FG Micro Plates using Modified Couple Stress Theory and first Order Shear Deformation Theory

    , M.Sc. Thesis Sharif University of Technology Yekani, Mohammad Amin (Author) ; Fallah Rajabzadeh, Famida (Supervisor) ; Farrahi, Gholamhossein (Supervisor)
    Abstract
    Based on the modified couple stress and Mindlin plate theories, a Levy type solution is presented for bending and vibration analysis of rectangular isotropic micro plates with simple supports at opposite edges and different boundary conditions at the other two ones. Modified couple stress theory is taken into account to capture the size effect and the governing equations are derived using Hamilton's principle, and solved by Levy solution and space-state method. The results are verified with the existing ones in the literature. As a benchmark, additional tables for vertical deflections and free vibrations of plate with various boundary conditions are presented  

    Buckling Analysis of Reinforced Composite Conical Shells under Axial Compressive Load using GDQ Method

    , M.Sc. Thesis Sharif University of Technology Gholami, Peyman (Author) ; Kouchakzadeh, Mohammad Ali (Supervisor) ; Shakouri, Meysam ($item.subfieldsMap.e) ; Noghabi, Mohammad ($item.subfieldsMap.e)
    Abstract
    The object of this study is to determine the buckling load of reinforced composite conical shells under axial compression. . Shells are reinforced by stringers and rings and the boundary conditions are assumed to be simply supported. At first the equilibrium equations are obtained using the first order shear deformation theory (FSDT), smeared stiffener technique and principle of minimum potential energy. In the following, the resulting equations which are the system of five variable coefficient partial differential equations in terms of displacement components are investigated by generalized differential quadrature method (GDQM). Finally the standard eigenvalue equation is formed and the... 

    Dynamic stability of functionally graded cantilever cylindrical shells under distributed axial follower forces

    , Article Journal of Sound and Vibration ; Vol. 333, Issue. 3 , 3 February , 2014 , pp. 801-817 ; ISSN: 0022460X Torki, M. E ; Kazemi, M. T ; Reddy, J. N ; Haddadpoud, H ; Mahmoudkhani, S ; Sharif University of Technology
    Abstract
    In this paper, flutter of functionally graded material (FGM) cylindrical shells under distributed axial follower forces is addressed. The first-order shear deformation theory is used to model the shell, and the material properties are assumed to be graded in the thickness direction according to a power law distribution using the properties of two base material phases. The solution is obtained by using the extended Galerkin's method, which accounts for the natural boundary conditions that are not satisfied by the assumed displacement functions. The effect of changing the concentrated (Beck's) follower force into the uniform (Leipholz's) and linear (Hauger's) distributed follower loads on the... 

    Dynamic stability of cantilevered functionally graded cylindrical shells under axial follower forces

    , Article Thin-Walled Structures ; Vol. 79, issue , June , 2014 , p. 138-146 Torki, M. E ; Kazemi, M. T ; Haddadpour, H ; Mahmoudkhani, S ; Sharif University of Technology
    Abstract
    Flutter of cantilevered, functionally graded cylindrical shells under an end axial follower force is addressed. The material properties are assumed to be graded along the thickness direction according to a simple power law. Using the Hamilton principle, the governing equations of motion are derived based on the first-order shear deformation theory. The stability analysis is carried out using the extended Galerkin method and minimum flutter loads and corresponding circumferential mode numbers are obtained for different volume fractions, length-to-radius, and thicknesses-to-radius ratios. Two different configurations are considered for the FGM: one in which the metal phase is the outer layer... 

    Bending analysis of moderately thick functionally graded conical panels with various boundary conditions using GDQ method

    , Article Composite Structures ; Volume 103 , September , 2013 , Pages 68-74 ; 02638223 (ISSN) Abediokhchi, J ; Shakouri, M ; Kouchakzadeh, M. A ; Sharif University of Technology
    2013
    Abstract
    This study presents the bending analysis of functionally graded conical panels under transverse compression with various boundary conditions. Equations was derived using first order shear deformation theory (FSDT) and solved using generalized differential quadrature (GDQ) method. Using this method results in the capability of studying any combinations of boundary conditions on four edges of the panel. Results are compared and validated with the results available in the literature. Effect of boundary conditions, volume fractions, panel length, semi-vertex angle and subtended angle on deflection of the panel was investigated  

    Free-edge stresses in general composite laminates

    , Article International Journal of Mechanical Sciences ; Volume 50, Issue 10-11 , 2008 , Pages 1435-1447 ; 00207403 (ISSN) Nosier, A ; Maleki, M ; Sharif University of Technology
    2008
    Abstract
    In the present study, by starting from the reduced form of elasticity displacement field for a long flat laminate, an analytical method is developed in order to accurately calculate the interlaminar stresses near the free edges of generally laminated composite plates under extension. The constant parameter appearing in the reduced displacement field, which describes the global rotational deformation of a laminate, is appropriately obtained by employing an improved first-order shear deformation theory. The accuracy and effectiveness of the proposed first-order theory are verified by means of comparison with the results of Reddy's layerwise theory as a three-dimensional benchmark. Reddy's... 

    Interlaminar stresses in antisymmetric angle-ply laminates

    , Article Composite Structures ; Volume 78, Issue 1 , 2007 , Pages 18-33 ; 02638223 (ISSN) Nosier, A ; Bahrami, A ; Sharif University of Technology
    2007
    Abstract
    Based on elasticity theory the reduced form of displacement field is developed for long antisymmertic angle-ply composite laminates subjected to extensional and/or torsional loads. Analytical solutions to the edge-effect problem of such laminates under a uniform axial strain are developed using the first-order shear deformation theory of plates and Reddy's layerwise theory. For a special set of boundary conditions an elasticity solution is presented to verify the validity and accuracy of the layerwise theory. Various numerical results are then developed within the layerwise theory for the interlaminar stresses through the thickness and across the interfaces of antisymmetric angle-ply... 

    Free-edge stresses in antisymmetric angle-ply laminates in extension and torsion

    , Article International Journal of Solids and Structures ; Volume 43, Issue 22-23 , 2006 , Pages 6800-6816 ; 00207683 (ISSN) Nosier, A ; Bahrami, A ; Sharif University of Technology
    2006
    Abstract
    The first-order shear deformation theory and the layerwise theory of laminated plates are employed to analyze the edge-effect problem of an antisymmetric angle-ply laminate subjected to arbitrary combinations of extensional and torsional loads. The first-order theory is used for predicting the unknown constant parameters appearing in the reduced displacement field of elasticity which, on the other hand, signify the global behavior of the laminate. A layerwise theory is then utilized to determine the local interlaminar stresses within the boundary-layer regions of laminates. In order to closely examine the behavioral characteristics of interlaminar stresses, various numerical examples are... 

    Application of nonlocal strain–stress gradient theory and GDQEM for thermo-vibration responses of a laminated composite nanoshell

    , Article Engineering with Computers ; Volume 37, Issue 4 , 2021 , Pages 3359-3374 ; 01770667 (ISSN) Moayedi, H ; Ebrahimi, F ; Habibi, M ; Safarpour, H ; Foong, L. K ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2021
    Abstract
    In this article, thermal buckling and frequency analysis of a size-dependent laminated composite cylindrical nanoshell in thermal environment using nonlocal strain–stress gradient theory are presented. The thermodynamic equations of the laminated cylindrical nanoshell are based on first-order shear deformation theory, and generalized differential quadrature element method is implemented to solve these equations and obtain natural frequency and critical temperature of the presented model. The results show that by considering C–F boundary conditions and every even layers’ number, in lower value of length scale parameter, by increasing the length scale parameter, the frequency of the structure...