Search for: five-leg-converter
0.005 seconds

    Implementation and hardware in the loop verification of five-leg converter control system on a FPGA

    , Article IECON Proceedings (Industrial Electronics Conference), 7 November 2011 through 10 November 2011, Melbourne, VIC ; 2011 , Pages 4015-4020 ; 9781612849720 (ISBN) Shahbazi, M ; Zolghadri, M. R ; Poure, P ; Saadate, S ; Sharif University of Technology
    FPGAs are interesting choices for control of power electronics converters and electrical drives. In this paper, implementation of the control method of a reduced switch- count five-leg converter is carried out. Two PWM methods are studied. For verification of the implemented controller in a practical manner, without risking the damaging of the real system, "FPGA in the loop" experiments are performed. It is shown that using the proposed methodology, FPGA implementation and verification is fast and effective. The provided results show the high performance of the implemented controller on the FPGA, therefore the feasibility and suitability of the FPGA for this application is approved  

    FPGA-based reconfigurable control for fault-tolerant back-to-back converter without redundancy

    , Article IEEE Transactions on Industrial Electronics ; Volume 60, Issue 8 , May , 2013 , Pages 3360-3371 ; 02780046 (ISSN) Shahbazi, M ; Poure, P ; Saadate, S ; Zolghadri, M. R ; Sharif University of Technology
    In this paper, an FPGA-based fault-tolerant back-to-back converter without redundancy is studied. Before fault occurrence, the fault-tolerant converter operates like a conventional back-to-back six-leg converter, and after the fault, it becomes a five-leg converter. Design, implementation, and experimental verification of an FPGA-based reconfigurable control strategy for this converter are discussed. This reconfigurable control strategy allows the continuous operation of the converter with minimum affection from a fault in one of the semiconductor switches. A very fast detection scheme is used to detect and locate the fault. Implementation of the fault detection and of the fully digital... 

    Fault-tolerant five-leg converter topology with FPGA-Based reconfigurable control

    , Article IEEE Transactions on Industrial Electronics ; Volume 60, Issue 6 , 2013 , Pages 2284-2294 ; 02780046 (ISSN) Shahbazi, M ; Poure, P ; Saadate, S ; Zolghadri, M. R ; Sharif University of Technology
    Fast fault detection and reconfiguration of power converters is necessary in electrical drives to prevent further damage and to make the continuity of service possible. On the other hand, component minimized converters may provide the benefits of higher reliability and less volume and cost. In this paper, a new fault-tolerant converter topology is studied. This converter has five legs before the fault occurrence, and after fault detection the converter continues to function with four legs. A very fast fault detection and reconfiguration scheme is presented and studied. Simulations and experimental tests are performed to evaluate the structure requirements, the digital reconfigurable... 

    Open-circuit switch fault tolerant wind energy conversion system based on six/five-leg reconfigurable converter

    , Article Electric Power Systems Research ; Volume 137 , 2016 , Pages 104-112 ; 03787796 (ISSN) Shahbazi, M ; Saadate, S ; Poure, P ; Zolghadri, M ; Sharif University of Technology
    Elsevier Ltd  2016
    In this paper, an FPGA-controlled fault tolerant back-to-back converter for DFIG-based wind energy conversion application is studied. Before an open-circuit failure in one of the semiconductors, the fault tolerant converter operates as a conventional back-to-back six-leg one. After the fault occurrence in one of the switches, the converter will continue its operation with the remaining five healthy legs. Design, implementation, simulation and experimental verification of a reconfigurable control strategy for the fault tolerant six/five leg converter used in wind energy conversion are discussed. The proposed reconfigurable control strategy allows the uninterrupted operation of the converter... 

    Five-leg converter topology for wind energy conversion system with doubly fed induction generator

    , Article Renewable Energy ; Volume 36, Issue 11 , 2011 , Pages 3187-3194 ; 09601481 (ISSN) Shahbazi, M ; Poure, P ; Saadate, S ; Zolghadri, M. R ; Sharif University of Technology
    In this paper, application of a five-leg converter in Doubly Fed Induction Generator (DFIG) for Wind Energy Conversion Systems (WECS) is investigated. The five-leg structure and its PWM control are studied and performances are compared with the classical six-leg topology. The main drawback of five-leg converter with respect to the six-leg back-to-back converter is the need to increase the dc-link voltage for the same operation point, i.e. the same powers in case of WECS. So, different methods for the reduction of the required dc-link voltage in the five-leg case are studied. The five-leg converter is used to replace the conventional six-leg one, with the same ability. For the performance...