Loading...
Search for: flapping-wing
0.005 seconds
Total 26 records

    Novel aspects of elastic flapping wing: analytical solution for inertial forcing

    , Article Advances in Aircraft and Spacecraft Science ; Volume 5, Issue 3 , May , 2018 , Pages 335-348 ; 2287528X (ISSN) Zare, H ; Pourtakdoust, S. H ; Bighashdel, A ; Sharif University of Technology
    Techno Press  2018
    Abstract
    The structural dynamics (SD) behavior of Elastic Flapping Wings (EFWs) is investigated analytically as a novel approach in EFWs analysis. In this regard an analytical SD solution of EFW undergoing a prescribed rigid body motion is initially derived, where the governing equations are expressed in modal space. The inertial forces are also analytically computed utilizing the actuator induced acceleration effects on the wing structure, while due to importance of analytical solution the linearity assumption is also considered. The formulated initial-value problem is solved analytically to study the EFW structural responses, where the effect of structure-actuator frequency ratio,... 

    Analytical structural behaviour of elastic flapping wings under the actuator effect

    , Article Aeronautical Journal ; Volume 122, Issue 1254 , 2018 , Pages 1176-1198 ; 00019240 (ISSN) Zare, H ; Pourtakdoust, S. H ; Bighashdel, A ; Sharif University of Technology
    Cambridge University Press  2018
    Abstract
    The effect of inertial forces on the Structural Dynamics (SD) behaviour of Elastic Flapping Wings (EFWs) is investigated. In this regard, an analytical modal-based SD solution of EFW undergoing a prescribed rigid body motion is initially derived. The formulated initial-value problem is solved analytically to study the EFW structural responses, and sensitivity with respect to EFWs' key parameters. As a case study, a rectangular wing undergoing a prescribed sinusoidal motion is simulated. The analytical solution is derived for the first time and helps towards a conceptual understanding of the overall EFW's SD behaviour and its analysis required in their designs. Specifically, the EFW transient... 

    A modified unsteady-nonlinear aeroelastic model for flapping wings

    , Article Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering ; 2022 ; 09544100 (ISSN) Pourtakdoust, S. H ; Zare, H ; Bighashdel, A ; Sharif University of Technology
    SAGE Publications Ltd  2022
    Abstract
    A novel integrated aeroelastic model of flapping wings (FWs) undergoing a prescribed rigid body motion is presented. In this respect, the FW nonlinear structural dynamics is enhanced via a newly proposed modification of implicit condensation and expansion (MICE) method that better considers the structural nonlinear effects. In addition, the unsteady aerodynamic model is also an extension of the widely utilized modified strip theory (MST) in which the flexibility effects are accounted for (MST-Flex). The integrated utility of the proposed generalized MICE and MST-Flex is demonstrated to be more realistic for elastic FW flight simulation applications. The prescribed rigid body motion is... 

    Aerodynamic Investigation of an Aeroelastic Flapping Wing and Optimum Design Method

    , Ph.D. Dissertation Sharif University of Technology Ebrahimi, Abbas (Author) ; Mazaheri, Karim (Supervisor)
    Abstract
    Flapping wing vehicles produce aerodynamic lift and thrust through the flapping motion of their wings. The dynamic performance of a flexible membrane flapping wing is experimentally investigated here. To investigate aeroelastic effects of flexible wings (specifically, wing’s twisting stiffness) on hovering and cruising aerodynamic performance, a flapping-wing system and an experimental setup were designed and built. This system measures the unsteady aerodynamic and inertial forces, power usage and angular speed of the flapping wing motion for different flapping frequencies, angles of attack, various wind tunnel velocities up to 12 m/s and for various wings with different chordwise... 

    Experimental Aerodynamic Modeling of a Rigid Flapping Wing

    , M.Sc. Thesis Sharif University of Technology Bighshdel, Ariyan (Author) ; Pourtakdoust, Hossein (Supervisor)
    Abstract
    Flapping Aerial Vehicles (FAVs) are those kinds of aerial vehicles in which the wings are responsible for simultaneous producing of lift and thrust forces. To provide necessary aerodynamic loads, flapping wings employ various unsteady mechanisms. They often fly at relatively high Angle of Attacks (AoA), respective to the relative flow. The aerodynamic modelling of flapping wing has always been a challenging task. The unspecified assumptions in the existing models, make them almost insufficient in flight simulation applications. Therefore, this paper aims to develop a generalized aerodynamic model. To this aim, a comprehensive investigation has been conducted on some of previous aerodynamic... 

    Multi-objective genetic algorithm for hover stabilization of an insect-like flapping wing

    , Article Applied Mechanics and Materials ; Volume 332 , 2013 , Pages 50-55 ; 16609336 (ISSN) ; 9783037857335 (ISBN) Khodabakhsh, H ; Banazadeh, A ; Sharif University of Technology
    2013
    Abstract
    This paper describes latest results obtained on modeling, simulation and controller design of an insect-like Flapping Wing Micro Air Vehicle (FWMAV). Because of the highly nonlinear and time varying nature of insect flight and the inability to find an equilibrium point, linearization of the model without compromising the accuracy is not possible. Therefore, to address the problem of designing a controller capable of stabilizing and controlling the FWMAV around a hovering point, a metaheuristic optimization approach is proposed, based on the time averaging theorem. The results show that a controller, designed using the proposed method, is capable of stabilizing the FWMAV effectively around... 

    Aerodynamic performance of a dragonfly-inspired tandem wing system for a biomimetic Micro air vehicle

    , Article Frontiers in Bioengineering and Biotechnology ; Volume 10 , 2022 ; 22964185 (ISSN) Salami, E ; Montazer, E ; Ward, T. A ; Nik Ghazali, N. N ; Anjum Badruddin, I ; Sharif University of Technology
    Frontiers Media S.A  2022
    Abstract
    The flying agility demonstrated by dragonflies is accomplished by means of complex aerodynamic forces produced by flapping their four wings arranged in a tandem configuration. The current study presents a novel tandem flapping wing mechanism for a biomimetic air vehicle that was designed and manufactured to experimentally investigate the aerodynamic forces. By optimizing the configuration and using spatial network analysis, it is shown that the designed structure can flap the wings in a linear up–down stroke motion and is capable of maintaining good consistency and aerodynamic performance. Such a mechanism could be used in a future biomimetic micro air vehicle (BMAV) design. The mechanism... 

    Adaptive Attitude and Position Control of a Rigid Body Insect-Like Flapping Wing

    , M.Sc. Thesis Sharif University of Technology Taymourtash, Neda (Author) ; Banazadeh, Afshin (Supervisor)
    Abstract
    In this study, adaptive control of attitude and position of a rigid body insect-like flapping wing is investigated. For this purpose, a non-linear dynamic and time varying modeling and simulation is carried out initially with six degrees of freedom, and then the accuracy of the simulation is evaluated during different test cases. In order to design the controller, non-linear and time varying dynamic is transformed into non-linear and time-invariant dynamic using theory of averaging. Then, a non-linear controller is designed based on Lyapunov stability theory. Due to the inefficiency of the aforementioned controller under disturbances and unknown uncertainties in the model, an adaptive... 

    6DOF Flight Dynamics Modeling of a Flexible Flapping wing using Unsteady Aerodynamics

    , Ph.D. Dissertation Sharif University of Technology Zare, Hadi (Author) ; Pourtakdoust, Hossein (Supervisor)
    Abstract
    A complete 6DOF flight dynamic model of an elastic flapping wing (EFW), integrated with unsteady aerodynamic theory is developed. In this respect, initially efficient high fidelity modules for EFW structural dynamics (SD) as well as unsteady aerodynamics loadings (UAL) to be coupled with its flight dynamics are prepared. A modal approach is followed to model structural dynamics of plain and 3D EFWs. This is in contrast with the Euler-Bernoulli beam theory that is mostly utilized for SD in the existing literature. In addition, due to the possibility of large wing deformations as well as the existence of non-linear displacement regime for realistic EFW flights, non-linear modal approaches such... 

    Investigation and Optimization of Structural Parameters of an Elastic Flapping Wing

    , M.Sc. Thesis Sharif University of Technology Badri Kouhi, Ehsan (Author) ; Dehghani Firouzabadi, Roohollah (Supervisor)
    Abstract
    In this thesis, effects of bending and torsional elasticity of a flapping wing on its average lift and input power are studied, using a semi-analytic method. Bending stiffness and torsional rigidity of wing spar, wing mass ratio and chordwise and spanwise center of gravity, also spar location are considered as variables for controlling elastic behavior of the wing.Governing integral equation is derived using Hamilton principle via modified quasi aerodynamic and linear Green-Lagrange strain tensor. Also an idealized flapping pattern is used to maximize average acceleration during each cycle. Next, integral equation is converted to a set of ordinary differential equations by means of Galerkin... 

    An Emotion-Based Intelligent Guidance Planning for a Flapping Vehicle

    , M.Sc. Thesis Sharif University of Technology Haeri, Amin (Author) ; Pourtakdoust, Hossein (Supervisor)
    Abstract
    In this research, an emotion-based intelligent guidance planning for a flapping vehicle is proposed. It utilizes different sciences including artificial intelligence, neural, fuzzy and psychology accompanied by flight dynamics and modeling. The proposed system enables the robot to make emotion, learn and make decision based on its given personality. The decision making is related to the path planning and how moving from the current position to the designed one. In other words, the robot, at each moment, knows what to do and how to do. Therefore, guidance commands of the flying robot are as outputs of the system. In the present research, the control system is assumed ideal. The introduced... 

    Aerodynamic Control of Flow Around a Rigid Wing in Flapping Motion Using Geometry Modification Methods

    , M.Sc. Thesis Sharif University of Technology Mohammadi, Mohammad Hossein (Author) ; Ebrahimi, Abbas (Supervisor) ; Farahani, Mohammad (Supervisor)
    Abstract
    The physics of the flow around the wing in the oscillatory motion of the wing has various patterns, including the leading edge vortex, the tip vortex and trailing edge vortex escape. The interaction of these vortices forms a complex flow structure around the wing, which will have a direct effect on the aerodynamic performance of the wing. Therefore, controlling these structures can be considered as a way to improve the performance of the flapping wing. One of the passive flow control techniques that has recently been taken into consideration is a leading-edge protuberance method. Another type of passive flow control is geometric correction, using corrugation method. According to studies, two... 

    Aeroelastic Modeling and Stability Analysis of a Flapping Wing with Unsteady Aerodynamic Approach

    , M.Sc. Thesis Sharif University of Technology Narimani, Mehrdad (Author) ; Pourtakdoost, Hossein (Supervisor)
    Abstract
    At this project we proceed to aero elastic modelling of a flapping wing using unsteady aerodynamic approach. Solving this model according to aerodynamic and structure coupling needs to simultaneously solve of aerodynamic and wing structure. Left side and right side of wing, each on divided into 18 elements. each element is interacting with sides element in terms of structural force and moment. In this modeling aerodynamic was modeling with unsteady aerodynamic approach (using modify theodersen function), also structure is flexible in to direction, bending and twisting. In the following it is proved that with change in flapping pattern better performance can be achieved. the effect of change... 

    Experimental investigation on aerodynamic performance of a flapping wing vehicle in forward flight

    , Article Journal of Fluids and Structures ; Volume 27, Issue 4 , 2011 , Pages 586-595 ; 08899746 (ISSN) Mazaheri, K ; Ebrahimi, A ; Sharif University of Technology
    2011
    Abstract
    The aerodynamic performance of a flexible membrane flapping wing has been investigated here. For this purpose, a flapping-wing system and an experimental set-up were designed to measure the unsteady aerodynamic forces of the flapping wing motion. A one-component force balance was set up to record the temporal variations of aerodynamic forces. The flapping wing was studied in a large low-speed wind tunnel. The lift and thrust of this mechanism were measured for different flapping frequencies, angles of attack and for various wind tunnel velocities. Results indicate that the thrust increases with the flapping frequency. An increase in the wind tunnel speed and flow angle of attack leads to... 

    Experimental study on interaction of aerodynamics with flexible wings of flapping vehicles in hovering and cruise flight

    , Article Archive of Applied Mechanics ; Volume 80, Issue 11 , 2010 , Pages 1255-1269 ; 09391533 (ISSN) Mazaheri, K ; Ebrahimi, A ; Sharif University of Technology
    2010
    Abstract
    Flapping wings are promising lift and thrust generators, especially for very low Reynolds numbers. To investigate aeroelastic effects of flexible wings (specifically, wing's twisting stiffness) on hovering and cruising aerodynamic performance, a flapping-wing system and an experimental setup were designed and built. This system measures the unsteady aerodynamic and inertial forces, power usage, and angular speed of the flapping wing motion for different flapping frequencies and for various wings with different chordwise flexibility. Aerodynamic performance of the vehicle for both no wind (hovering) and cruise condition was investigated. Results show how elastic deformations caused by... 

    Experimental investigation of the effect of chordwise flexibility on the aerodynamics of flapping wings in hovering flight

    , Article Journal of Fluids and Structures ; Volume 26, Issue 4 , May , 2010 , Pages 544-558 ; 08899746 (ISSN) Mazaheri, K ; Ebrahimi, A ; Sharif University of Technology
    2010
    Abstract
    Ornithopters or mechanical birds produce aerodynamic lift and thrust through the flapping motion of their wings. Here, we use an experimental apparatus to investigate the effects of a wing's twisting stiffness on the generated thrust force and the power required at different flapping frequencies. A flapping wing system and an experimental set-up were designed to measure the unsteady aerodynamic and inertial forces, power usage and angular speed of the flapping wing motion. A data acquisition system was set-up to record important data with the appropriate sampling frequency. The aerodynamic performance of the vehicle under hovering (i.e., no wind) conditions was investigated. The lift and... 

    Aeroelastic Modeling of a Flexible Hybrid FMAV for 3D Controlled Flight

    , M.Sc. Thesis Sharif University of Technology Javaheri, Sajad (Author) ; Pourtakdoust, Hossein (Supervisor)
    Abstract
    Propulsive efficiency of flapping wings is optimized via a combination of flapping and elastic wing behavior. In this thesis, a complex complete model of flapping air vehicles (FAV) is developed in order to simulate the wing aeroelastic behavior. The resulting model is in the form of a complex set of partial differential equations whose solution is only numerically possible. Using the resulting simulation model, the different flapping behavior of the right and left wings can also be evaluated along with the resulting forces and moments that make the FAV flight realizable. One of the key flight conditions considered in many simulations is that of cruise flight. In order to have a... 

    Aeroelastic Modeling, Experimental Validation and Stability Analysis of a Flapping Wing Air Vehicle in Planar Flight

    , Ph.D. Dissertation Sharif University of Technology Karimian Aliabdi, Saeed (Author) ; Pourtakdoust, Hossein (Supervisor)
    Abstract
    In this research, aeroelastic model of an elastic flapping wing has been derived in order to be integrated with the flight dynamic model. The model developed in this research well describes the coupled and nonlinear behavior of the passive torsional deformations of the wing during flapping motion. Based on this obtained equations, a precise propulsion model proper for flapping wing vehicles has been introduced. The effect of geometric and mechanical properties of the wing is being accounted. In order to validation of the analytical model several FMAVs as well as an instrumented test stand for online measurements of forces, flapping angle and power consumption have been designed and built... 

    Experimental Study of the Effect of Wing Flapping on the Aerodynamic Performance of Tail and the Stability of a Flapping Wing Air Vehicle

    , M.Sc. Thesis Sharif University of Technology Mesmarian, Mohammad Navid (Author) ; Pourtakdoust, Hossein (Supervisor) ; Kiani, Maryam (Co-Supervisor)
    Abstract
    In adaptation with nature, Flapping Wing Arial Robots (FWARs) are flying vehicles that use wing flapping motion to produce lift and thrust forces simultaneously. Wing oscillating motion of FWARs in turn creates an unsteady and turbulent flow field around them that makes their aerodynamic modeling and analysis a complex and formidable task. As a result, experimental aerodynamic investigation of FWARs has been the focus of many researchers in the last few years. Inspired by nature, Bird-like FWARs utilize a tail as an augmented aerodynamic surface during their flight motion. In turn the tail aerodynamics that in general plays an important role in flight stability and control is adversely... 

    Modeling and Simulation of a Dragonfly-like Micro Aerial Vehicle with Rigid Wings

    , M.Sc. Thesis Sharif University of Technology Toulabi, Sobhan (Author) ; Banazadeh, Afshin (Supervisor)
    Abstract
    Dynamical behavior of a dragonfly-like with rigid flapping wings considering aerodynamic forces has been modelled and simulated. At first, the dragonfly with its unique flying capabilities and the reasons for choosing it has been introduced. Then, modelling process is started with preliminary definitions including frames, coordinates and equations of motion, continued by applying initial conditions and ended with verification tests. After that, aerodynamic effects in a quasi-steady sense is added to dynamical model resulting in an 18 DOF model developed to be used for nonlinear simulation or controller designing. At the end, the results are validated in comparison to an experimental study....