Loading...
Search for: flight-control
0.012 seconds
Total 44 records

    Modeling and Design Analysis of an Aircraft Longitudinal Reversible Flight Control System and its Enhancement to Irreversible One

    , M.Sc. Thesis Sharif University of Technology Ferdowsi, Mohammad (Author) ; Pourtakdoust, Hossien (Supervisor) ; Raeesi Charmkani, Kamran (Supervisor)
    Abstract
    Flight control system (FCS) design, analysis and modeling has an important role in aircraft design and development process. However, FCS analysis and studies are rarely focused at university levels and its know-how and technical issues are almost proprietary to various aircraft industries. One of the key goals of this thesis is to express, introduce and implement the processes that need to be followed for a sample longitudinal reversible FCS design (RFCS), where the modelling aspects are described for an existing aircraft. The latter is achieved using existing drawings, system and aerodynamic data of an existing aircraft utilizing commercial tools such as CATIA for initial design and ADAMS... 

    Compensation by fractional-order phase-lead/lag compensators

    , Article IET Control Theory and Applications ; Volume 8, Issue 5 , 2014 , Pages 319-329 ; ISSN: 17518644 Tavazoei, M. S ; Tavakoli Kakhki, M ; Sharif University of Technology
    Abstract
    This study deals with a generalised version of lead/lag compensators known as fractional-order lead/lag compensators. Exact and simple formulas are found for designing this introduced type of fractional-order compensators in order to provide the required magnitude and phase at a given frequency. Also, the region in the phase-magnitude plane, which is accessible by these compensators, is analytically found. Moreover, numerical examples and experimental results are presented to show the applicability of the achievements of this study in control system design  

    Dynamic modeling, control system design and mil–hil tests of an unmanned rotorcraft using novel low-cost flight control system

    , Article Iranian Journal of Science and Technology - Transactions of Mechanical Engineering ; 2019 ; 22286187 (ISSN) Khalesi, M. H ; Salarieh, H ; Saadat Foumani , M ; Sharif University of Technology
    Springer  2019
    Abstract
    Unmanned helicopters have gained great importance during recent years due to their special abilities such as hover flight, vertical take-off and landing, maneuverability and superior agility. The advances in electronic devices technologies lead to more powerful and lighter processors to be used in avionic systems which have attracted more attention to these UAVs. The first steps of utilizing an unmanned helicopter are dynamic modeling, control system design and performing model-in-the-loop (MIL) and hardware-in-the-loop (HIL) tests which are presented in this paper. In this research, MIL and HIL tests of an unmanned helicopter are done using novel Linux-based flight control system built on... 

    Dynamic modeling, control system design and MIL–HIL tests of an unmanned rotorcraft using novel low-cost flight control system

    , Article Iranian Journal of Science and Technology - Transactions of Mechanical Engineering ; 2019 ; 22286187 (ISSN) Khalesi, M. H ; Salarieh, H ; Foumani, M. S ; Sharif University of Technology
    Springer  2019
    Abstract
    Unmanned helicopters have gained great importance during recent years due to their special abilities such as hover flight, vertical take-off and landing, maneuverability and superior agility. The advances in electronic devices technologies lead to more powerful and lighter processors to be used in avionic systems which have attracted more attention to these UAVs. The first steps of utilizing an unmanned helicopter are dynamic modeling, control system design and performing model-in-the-loop (MIL) and hardware-in-the-loop (HIL) tests which are presented in this paper. In this research, MIL and HIL tests of an unmanned helicopter are done using novel Linux-based flight control system built on... 

    Robust attitude control of an agile aircraft using improved Q-Learning

    , Article Actuators ; Volume 11, Issue 12 , 2022 ; 20760825 (ISSN) Zahmatkesh, M ; Emami, S. A ; Banazadeh, A ; Castaldi, P ; Sharif University of Technology
    MDPI  2022
    Abstract
    Attitude control of a novel regional truss-braced wing (TBW) aircraft with low stability characteristics is addressed in this paper using Reinforcement Learning (RL). In recent years, RL has been increasingly employed in challenging applications, particularly, autonomous flight control. However, a significant predicament confronting discrete RL algorithms is the dimension limitation of the state-action table and difficulties in defining the elements of the RL environment. To address these issues, in this paper, a detailed mathematical model of the mentioned aircraft is first developed to shape an RL environment. Subsequently, Q-learning, the most prevalent discrete RL algorithm, will be... 

    Neural network-based flight control systems: Present and future

    , Article Annual Reviews in Control ; Volume 53 , 2022 , Pages 97-137 ; 13675788 (ISSN) Emami, S.A ; Castaldi, P ; Banazadeh, A ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    As the first review in this field, this paper presents an in-depth mathematical view of Intelligent Flight Control Systems (IFCSs), particularly those based on artificial neural networks. The rapid evolution of IFCSs in the last two decades in both the methodological and technical aspects necessitates a comprehensive view of them to better demonstrate the current stage and the crucial remaining steps towards developing a truly intelligent flight management unit. To this end, in this paper, we will provide a detailed mathematical view of Neural Network (NN)-based flight control systems and the challenging problems that still remain. The paper will cover both the model-based and model-free... 

    Dynamic modeling, control system design and MIL–HIL tests of an unmanned rotorcraft using novel low-cost flight control system

    , Article Iranian Journal of Science and Technology - Transactions of Mechanical Engineering ; Volume 44, Issue 3 , 28 March , 2020 , Pages 707-726 Khalesi, M. H ; Salarieh, H ; Saadat Foumani, M ; Sharif University of Technology
    Springer  2020
    Abstract
    Unmanned helicopters have gained great importance during recent years due to their special abilities such as hover flight, vertical take-off and landing, maneuverability and superior agility. The advances in electronic devices technologies lead to more powerful and lighter processors to be used in avionic systems which have attracted more attention to these UAVs. The first steps of utilizing an unmanned helicopter are dynamic modeling, control system design and performing model-in-the-loop (MIL) and hardware-in-the-loop (HIL) tests which are presented in this paper. In this research, MIL and HIL tests of an unmanned helicopter are done using novel Linux-based flight control system built on... 

    Adaptive integrated guidance and fault tolerant control using backstepping and sliding mode

    , Article International Journal of Aerospace Engineering ; Volume 2015 , September , 2015 ; 16875966 (ISSN) Jegarkandi, M. F ; Ashrafifar, A ; Mohsenipour, R ; Sharif University of Technology
    Hindawi Publishing Corporation  2015
    Abstract
    A new method of integrated guidance and control for homing missiles with actuator fault against manoeuvring targets is proposed. Model of the integrated guidance and control system in the pitch plane with actuator fault and some uncertainty is developed. A control law using combination of adaptive backstepping and sliding mode approaches is designed to achieve interception in the presence of bounded uncertainties and actuator fault. Simulation results show that new approach has better performance than adaptive backstepping and has good performance in the presence of actuator fault  

    On the predicted errors of atmospheric guidance laws

    , Article Aircraft Engineering and Aerospace Technology ; Volume 80, Issue 3 , 2008 , Pages 262-273 ; 00022667 (ISSN) Jalali Naini, S. H ; Pourtakdoust, S. H ; Sharif University of Technology
    2008
    Abstract
    Purpose - The purpose of this paper is to develop a novel solution for the predicted error and introduces a systematic method to develop optimal and explicit guidance strategies for different missions. Design/methodology/approach - The predicted error is derived from its basic definition through analytic]al dynamics. The relations are developed for two classes of systems. First, for systems in which the acceleration commands are truncated at a specified time. Second, for systems in which the corrective maneuvers are cut off at a specified time. The predicted error differential equation is obtained in a way that allows for derivation of several optimal and explicit guidance schemes. Findings... 

    Behavior-based acceleration commanded formation flight control

    , Article ICCAS 2010 - International Conference on Control, Automation and Systems 2010, Article number 5670304, Pages 1340-1345 ; 2010 , Pages 1340-1345 ; 9781424474530 (ISBN) Soleymani, T ; Saghafi, F ; Sharif University of Technology
    2010
    Abstract
    In this paper, the design of a formation flight controller is investigated. Each vehicle in the formation is controlled by designing two separate control loops. The formation flight controller placed in the outer loop employs behavior-based control as a distributed control strategy to steer the vehicle by producing acceleration commands and the control system placed in the inner loop is to convert these commands to the actuator commands. Leader following architecture is applied to define the structure for the formation flight. To study the pragmatic issues of the proposed formation flight controller, it is implemented into multiple micro air vehicles which are modeled by a... 

    In-flight estimation of time-varying aircraft center of gravity position based on kinematics approach

    , Article Journal of Aircraft ; Volume 55, Issue 5 , 2018 , Pages 2037-2049 ; 00218669 (ISSN) Dehghan Manshadi, A ; Saghafi, F ; Sharif University of Technology
    American Institute of Aeronautics and Astronautics Inc  2018
    Abstract
    In-flight aircraft center of gravity (COG) position estimation is investigated in this study based on the kinematics approach. The Quad-M basics of system identification requirements are carefully investigated for time-invariant and time-varying COG estimation during airdrop maneuver as a case study that contains both conditions. Modeling and simulation of airdrop maneuver are employed to prepare the required maneuver and measurement data for this investigation. The relative-acceleration equation, as a model structure, and parameter modeling of time-varying COG location and acceleration are introduced into the system identification and parameter estimation framework. The Kalman filter method... 

    Design and Implementation of an Automatic Flight Control System for an Unmanned Helicopter for Hover Flight and Trajectory Tracking

    , Ph.D. Dissertation Sharif University of Technology Khalesi, Mohammad Hossein (Author) ; Salarieh, Hassan (Supervisor) ; Saadat Foumani, Mahmoud (Supervisor)
    Abstract
    Unmanned Aerial Vehicles (UAVs) have attracted huge attention in recent years due to the technology improvements. Among them, Unmanned Helicopters (UHs) have great importance because of their special abilities. In this research, the problem of design and implementation of an actual flight control system for an unmanned helicopter is investigated. For this purpose, first a multi-level flight simulation environment is developed in Simulink software environment to model the helicopter flight dynamics. The system identification, control system design and implementation are successfully performed in this flight simulator. Next, the actual helicopter flight control system is designed and produced... 

    Flight Formation Control & Obstacle Avoidance of a UAV Team Using Fuzzy Predictive Artificial Potential Field Method

    , M.Sc. Thesis Sharif University of Technology Vahedi, Amir Mohammad (Author) ; Nobahari, Hadi (Supervisor)
    Abstract
    This thesis focuses on the development of a flight formation control algorithm and obstacle avoidance of a UAV team using fuzzy predictive artificial potential field (FPAPF) method. One of the common methods for path generation and obstacle avoidance is the artificial potential field (APF) method. The basis of the APF method is that the UAV is attracted to the target point and repelled from the obstacles by using the potential fields of attraction and repulsion. The popularity of this method is due to its computational simplicity and efficiency. The APF method has limitations due to constant attraction and repulsion coefficients. The proposed real-time FPAPF method uses fuzzy logic to... 

    Investigation of in-orbit disturbing loads induced on spacecraft due to elastic deploying arm

    , Article International Journal of Structural Stability and Dynamics ; Volume 13, Issue 4 , 2013 ; 02194554 (ISSN) Ghaleh, P. B ; Malaek, S. M ; Sharif University of Technology
    2013
    Abstract
    The loads induced on the spacecraft orbiting the Earth by the deploying elastic arm are investigated. The coupled equations of motion of the arm with the vehicle orbital mechanics are used to describe the 3D dynamic behavior of the flexible-appendage and the related disturbing loads induced on the spacecraft. To this end, an equivalent dynamical system is derived for the arm by applying an attached Non-Newtonian Reference Frame which is subjected to the orbital motion and geocentric pointing maneuver of the spacecraft. With the help of the Assumed Modes Method, the behavior of the arm attached to the spacecraft in Keplerian orbits is studied. The results show that deploying the arm in some... 

    Modeling, simulation and frequency-response identification of a quadrotor

    , Article Proceedings of the IASTED International Conference on Modelling, Identification and Control ; 2013 , Pages 476-483 ; 10258973 (ISSN) ; 9780889869431 (ISBN) Shadram, Z ; Bassam, S. S ; Sharif University of Technology
    2013
    Abstract
    Due to their agile manoeuvrability and simplicity of construction, quadrotor are employed in a variety of applications. Most of their expenses are due to complex control systems, since, to reduce these expenses, low cost control methods which are based on linear models should be used to achieve an autonomous flight. First, the process of accurate dynamic modeling of a sample quad rotor which is simulated by MATLAB SIMULINK is presented. Then, a frequency sweep input stimulates the virtual model in order to identify a linear model based on frequency response analysis. Consequently, the desired linear model is obtained in both hover and yaw mode of motion. However, pitch and roll mode were too... 

    Sliding mode leader following control for autonomous air robots

    , Article 2011 IEEE/SICE International Symposium on System Integration, SII 2011, 20 December 2011 through 22 December 2011 ; December , 2011 , Pages 972-977 ; 9781457715235 (ISBN) Soleymani, T ; Saghafi, F ; Sharif University of Technology
    2011
    Abstract
    In this paper, we propose a leader following control for autonomous air robots. The separated design strategy with kinematic acceleration commands is used. The location of the robot with respect to the leader is specified by a range and two angles. We obtain the kinematic model of the system represented by the state-space equations. The controller is designed based on the sliding mode control which asymptotically stabilizes the tracking errors in presence of uncertainties and disturbances. In order to implement the leader following controller in the air robots, a control system is introduced which converts the acceleration commands to the actuator commands. Simulations are provided to show... 

    Design of passive viscous fluid control systems for nonlinear structures based on active control

    , Article Journal of Earthquake Engineering ; 2017 , Pages 1-22 ; 13632469 (ISSN) Zare, A. R ; Ahmadizadeh, M ; Sharif University of Technology
    Abstract
    A practical procedure is developed for the design of passive control systems using viscous fluid dampers for nonlinear structures. The design methodology takes advantage of the modification of the damping, strength, and stiffness properties of the structure to achieve the desired relative displacement and absolute acceleration response. For this purpose, a study of poles in the complex plane is used to determine the required changes in the dynamic properties of nonlinear structures. Furthermore, a relatively simple relation between the ductility demands of highly damped single- and multiple-degree-of-freedom (SDF and MDF respectively) systems is established to reduce the computational burden... 

    Application of active piezoelectric patches in controlling the dynamic response of a thin rectangular plate under a moving mass

    , Article International Journal of Solids and Structures ; Volume 46, Issue 11-12 , 2009 , Pages 2429-2443 ; 00207683 (ISSN) Rahimzadeh Rofooei, F ; Nikkhoo, A ; Sharif University of Technology
    2009
    Abstract
    The governing differential equation of motion for an undamped thin rectangular plate with a number of bonded piezoelectric patches on its surface and arbitrary boundary conditions is derived using Hamilton's principle. A moving mass traveling on an arbitrary trajectory acts as an external excitation for the system. The effect of the moving mass inertia is considered using all the out-of-plane translational acceleration components. The method of eigenfunction expansion is used to transform the equation of motion into a number of coupled ordinary differential equations. A classical closed-loop optimal control algorithm is employed to suppress the dynamic response of the system, determining the... 

    Design of passive viscous fluid control systems for nonlinear structures based on active control

    , Article Journal of Earthquake Engineering ; Volume 23, Issue 6 , 2019 , Pages 1033-1054 ; 13632469 (ISSN) Zare, A. R ; Ahmadizadeh, M ; Sharif University of Technology
    Taylor and Francis Ltd  2019
    Abstract
    ABSTARCT: A practical procedure is developed for the design of passive control systems using viscous fluid dampers for nonlinear structures. The design methodology takes advantage of the modification of the damping, strength, and stiffness properties of the structure to achieve the desired relative displacement and absolute acceleration response. For this purpose, a study of poles in the complex plane is used to determine the required changes in the dynamic properties of nonlinear structures. Furthermore, a relatively simple relation between the ductility demands of highly damped single- and multiple-degree-of-freedom (SDF and MDF respectively) systems is established to reduce the... 

    Dynamic stability and control of a novel handspringing robot

    , Article Mechanism and Machine Theory ; Volume 137 , 2019 , Pages 154-171 ; 0094114X (ISSN) Zabihi, M ; Alasty, A ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    In the field of mobile robotics, legged locomotion plays an essential role in transporting robots over various terrain types. A significant portion of research on legged robots has been focused on one-legged robots. In contrast with different types of locomotion of multi-legged robots, one-legged robots have only one type of motion, called hopping. Hopping motion, as a type of hybrid behavior, is generally comprised of flight and stance phases. Dynamic stabilizing of hopping motion provides a challenging control problem because of its nonlinear and hybrid behavior. The majority of one-legged hopping robots investigated so far are only capable of hopping with one side of their leg. In this...