Loading...
Search for: flood-modeling
0.005 seconds

    Application of unmanned aerial vehicle Dem in flood modeling and comparison with global dems: case study of atrak river basin, Iran

    , Article Journal of Environmental Management ; Volume 317 , 2022 ; 03014797 (ISSN) Parizi, E ; Khojeh, S ; Hosseini, S. M ; Jouybari Moghadam, Y ; Sharif University of Technology
    Academic Press  2022
    Abstract
    Digital Elevation Models (DEMs) play a significant role in hydraulic modeling and flood risk management. This study initially investigated the effect of Unmanned Aerial Vehicle (UAV) DEM resolutions, ranging from 1 m to 30 m, on flood characteristics, including the inundation area, mean flow depth, and mean flow velocity. Then, the errors of flood characteristics for global DEMs, comprising ALOS (30 m), ASTER (30 m), SRTM (30 m), and TDX (12 m) were quantified using UAV DEM measurements. For these purposes, the HEC-RAS 2D model in steady-state conditions was used to simulate the flood with return periods of 5- to 200 years along 20 km reach of Atrak River located in northeastern Iran.... 

    Relative permeability and capillary pressure curves for low salinity water flooding in sandstone rocks

    , Article Journal of Natural Gas Science and Engineering ; Volume 25 , July , 2015 , Pages 30-38 ; 18755100 (ISSN) Shojaei, M. J ; Ghazanfari, M. H ; Masihi, M ; Sharif University of Technology
    Elsevier  2015
    Abstract
    Recently much attention has been paid to the use of low salinity water (LSW) as an enhanced oil recovery fluid. The change observed in recovery factor during LSW flooding is induced from changes in relative permeability and capillary pressure when different levels of salinity are used. However, a few researchers tried to evaluate how macroscopic flow functions depend on the salinity of the injected water. To this end, a series of oil displacement by water was performed on a sandstone rock aged with crude oil in the presence of connate water. The capillary pressure and relative permeability curves are evaluated from inverse modeling of the obtained pressure drop and oil production data. Then,... 

    Improvement of polymer flooding using in-situ releasing of smart nano-scale coated polymer particles in porous media

    , Article Energy Exploration and Exploitation ; Volume 30, Issue 6 , 2012 , Pages 915-940 ; 01445987 (ISSN) Ashrafizadeh, M ; Ramazani, S. A. A ; Sadeghnejad, S ; Sharif University of Technology
    2012
    Abstract
    The main purpose of this paper is modeling and simulation of in-situ releasing of smart nano-sized core-shell particles at the water-oil interface during polymer flooding. During the polymer flooding process, when these nano-particles reach the water-oil interface, migrate to the oil phase and the hydrophobic layer of them dissolves in this phase. After dissolution of this protective nano-sized layer, the hydrophilic core containing a water-soluble ultra high molecular weight polymer diffuses back into the water phase and with dissolving in this phase, dramatically increases viscosity of flooding water in the neighborhood of the water-oil interface. In this study, two different...