Loading...
Search for: flow-condition
0.006 seconds
Total 22 records

    A new approach to the analytical and numerical solution of the bidirectional vortex flow

    , Article 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Cincinnati, OH, 8 July 2007 through 11 July 2007 ; Volume 5 , 2007 , Pages 4856-4869 ; 1563479036 (ISBN); 9781563479038 (ISBN) Jamaly, S. M ; Saidi, M. H ; Ghafourian, A ; Mozafari, A. A ; Dehghani, S. R ; Sharif University of Technology
    2007
    Abstract
    The solution for bulk fluid motion of a bidirectional coaxial vortex for application in vortex engine has been derived. The vortex engine is a novel combustion chamber in which swirl motion of reactants are used to maintain the chamber walls cool. The flow field has been considered both analytically and numerically. The model is based on incompressible, steady, axisymmetric, and non-reactive flow conditions. The governing PDEs are reduced to a system of nonlinear ODEs and then, by a coordinate transformation, their singularity has been relaxed. Solution domain has been decomposed into the inner viscous and outer inviscid regions, then, the velocity and pressure fields are obtained... 

    Pore-scale simulation of calcite matrix acidizing with hydrochloric acid

    , Article SPE Journal ; Volume 26, Issue 2 , 2021 , Pages 653-666 ; 1086055X (ISSN) Haghani Galougahi, M. j ; Sharif University of Technology
    Society of Petroleum Engineers (SPE)  2021
    Abstract
    A continuum hydrodynamic model with immersed solid/fluid interface is developed for simulating calcite dissolution by hydrochloric acid (HCl) at the pore scale, and is most accurate for a mass-transfer-controlled dissolution regime under laminar flow conditions. The model uses averaged Navier-Stokes equations to model momentum transfer in porous media and adopts a theoretically developed mass-transfer formulation with assumptions. The model includes no fitting parameter and is validated using experimental results. The findings of previous research and existing models are briefly discussed and their shortcomings and advantages are elucidated. The present model is used in some pore-scale... 

    Structure of the ethanol spray flame under conventional and MILD conditions

    , Article Fuel ; Volume 321 , 2022 ; 00162361 (ISSN) Karimi Motaalegh Mahalegi, H ; Mardani, A ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    A numerical examination is carried out on the experimental MILD turbulent spray burner of Delft Spray in Hot Co-flow, DSHC. The RANS approach is combined with the Lagrangian tracking of droplets for modeling the pressure-swirl atomizer. The EDC combustion model is employed, to take into account detailed chemical mechanisms. Predictions show that the structure of the triple-flame of liquid fuel in the atmospheric condition is different from the conventional gaseous triple-flames. Furthermore, the structure of the MILD spray flame is compared to the non-MILD spray flame. The flame index shows that the triple-flame structure in the conventional spray flame that consists of two outer and middle... 

    An experimental investigation of permeability impairment under dynamic flow conditions due to natural depletion in an Iranian oilfield

    , Article Petroleum Science and Technology ; Volume 31, Issue 3 , 2013 , Pages 250-261 ; 10916466 (ISSN) Khalifeh, M ; Bagherzadeh, H ; Bolouri, H ; Sharif University of Technology
    2013
    Abstract
    Asphaltene deposition is an issue that has received much attention since it has been shown to be the cause of major production problems. It leads to permeability reduction under the processes of natural depletion as well as hydrocarbon gas/CO2 injection. Though a great deal of researches have focused on studying permeability impairment in reservoir rocks, little is known about the asphaltene deposition mechanisms that control the permeability reduction for Iranian reservoirs. In this work, an experimental effort is made to investigate the permeability impairment of core samples of Iranian oil reservoirs. The experiments are performed on both sandstone and carbonate rock types at reservoir... 

    Influence of unsteady flow hydrograph shape on local scouring around bridge pier

    , Article Proceedings of the Institution of Civil Engineers: Water Management ; Volume 165, Issue 9 , October , 2012 , Pages 473-480 ; 17417589 (ISSN) Borghei, S. M ; Kabiri-Samani, A ; Banihashem, S. A ; Sharif University of Technology
    ICE Pub  2012
    Abstract
    Accurate estimation of scour depth is needed for economic and safe determination of bridge pier foundation depth. Most design criteria are based on maximum scour depth due to the steady design discharge without flow time limit. In this paper, the results are presented of an experimental investigation on local scouring around a single bridge pier under steady and unsteady flow regimes. For unsteady flow, triangular shape hydrographs with repeatable peaks have been chosen. Results show that both sharp and flat increases to the peak of hydrographs have a negligible effect on scour depth for the same base time. An equation is obtained to compute the scour depth due to a specific triangular... 

    An investigation on turbocharger turbine performance parameters under inlet pulsating flow

    , Article Journal of Fluids Engineering, Transactions of the ASME ; Volume 134, Issue 8 , 2012 ; 00982202 (ISSN) Tabatabaei, H ; Masoud, B ; Mohammad, T. R ; Sharif University of Technology
    ASME  2012
    Abstract
    Three-dimensional steady and unsteady (pulsating) compressible flows in a vane-less turbocharger turbine of a 1.7 liter SI engine are simulated numerically, and the results are validated experimentally using a turbocharged on-engine test cell. Simulations are carried out for a 720° engine cycle at three engine speeds, and the complete forms of volute and rotor vanes are modeled. Two ways for modeling the rotating wheel, multiple reference frames (MRF), and sliding mesh (SM) techniques are also examined. Finally, the effects of pulsating flow on the turbocharger turbine performance parameters (TTPP) such as the inlet static pressure, reduced mass flow rate, and efficiency are obtained and... 

    Assessment of three preconditioning schemes for solution of the two-dimensional Euler equations at low Mach number flows

    , Article International Journal for Numerical Methods in Engineering ; Volume 89, Issue 1 , 2012 , Pages 20-52 ; 00295981 (ISSN) Hejranfar, K ; Kamali Moghadam, R ; Sharif University of Technology
    Abstract
    Three preconditioners proposed by Eriksson, Choi and Merkel, and Turkel are implemented in a 2D upwind Euler flow solver on unstructured meshes. The mathematical formulations of these preconditioning schemes for different sets of primitive variables are drawn, and their eigenvalues and eigenvectors are compared with each other. For this purpose, these preconditioning schemes are expressed in a unified formulation. A cell-centered finite volume Roe's method is used for the discretization of the preconditioned Euler equations. The accuracy and performance of these preconditioning schemes are examined by computing steady low Mach number flows over a NACA0012 airfoil and a two-element... 

    Duct design in subsonic & supersonic flow regimes with and without normal shock wave using flexible string algorithm

    , Article Proceedings of the ASME Turbo Expo, 8 June 2009 through 12 June 2009, Orlando, FL ; Volume 7, Issue PART A , 2009 , Pages 513-523 ; 9780791848883 (ISBN) Nili Ahmadabadi, M ; Hajilouy Benisi, A ; Durali, M ; Ghadak, F ; Sharif University of Technology
    Abstract
    In this investigation, the Flexible String Algorithm (FSA), used before for 2D subsonic ducts inverse design, is developed and applied to inverse design of supersonic ducts with and without normal shock wave. In this method, the duct wall shape is changed under an algorithm based on deformation of a virtual flexible string in a flow. The deformation of the string due to the local flow conditions resulting from changes in wall geometry is performed until the target shape satisfying the prescribed walls pressure distribution is achieved. The flow field at each step is analyzed using Euler equations solutions by the AUSM method. Some validation test cases and design examples in subsonic and... 

    Physical aspects of rarefied gas flow in micro to nano scale geometries using DSMC

    , Article 39th AIAA Fluid Dynamics Conference, 22 June 2009 through 25 June 2009, San Antonio, TX ; 2009 ; 9781563479755 (ISBN) Roohi, E ; Darbandi, M ; Mirjalili, V ; Schneider, G. E ; Sharif University of Technology
    Abstract
    Rarefied gas flow in micro/nano electro mechanical systems (MEMS/NEMS) does not perform exactly as that in macro-scale devices. The main goal in this study is to investigate mixed subsonic-supersonic flows in micro/nano channels and nozzles and to provide physical descriptions on their behaviors. We use DSMC method as a reliable numerical tool to extend our simulation. It is because the DSMC provides accurate solution for the Boltzmann equations over the entire range of rarefied flow regime or Knudsen numbers. As is known, the appearance of oblique/normal shocks at the inlet of a channel or a nozzle adds to the complexity of internal flow field analyses. We found some very unique physical... 

    Inverse design of 2-D subsonic ducts using flexible string algorithm

    , Article Inverse Problems in Science and Engineering ; Volume 17, Issue 8 , 2009 , Pages 1037-1057 ; 17415977 (ISSN) Nili Ahmadabadi, M ; Dural, M ; Hajilouy Benisi, A ; Ghadak, F ; Sharif University of Technology
    Abstract
    The duct inverse design in fluid flow problems usually involves finding the wall shape associated with a prescribed distribution of wall pressure or velocity. In this investigation, an iterative inverse design method for 2-D subsonic ducts is presented. In the proposed method, the duct walls shape is changed under a novel algorithm based on the deformation of a virtual flexible string in flow. The deformation of the string due to the local flow conditions resulting from changes in wall geometry is observed until the target shape satisfying the prescribed wall's pressure distribution is reached. The flow field at each step is analysed using Euler equations and the advection upstream splitting... 

    Experimental investigation of two phase flow in horizontal wells: Flow regime assessment and pressure drop analysis

    , Article Experimental Thermal and Fluid Science ; Volume 88 , 2017 , Pages 55-64 ; 08941777 (ISSN) Shams, R ; Tavakoli, A ; Shad, S ; Sharif University of Technology
    Elsevier Inc  2017
    Abstract
    Multiphase flow is fundamental to different fields of engineering and science including petroleum engineering. In oil and gas, flow of multiple phases inside wells is a common phenomenon. In such conditions, petroleum engineers deal with different design and operational difficulties due to complexities involved in flow of multiple phases inside a well. Unlike flow of gas and liquid inside a well, the liquid-liquid flow inside a horizontal well has received rather less attention. This study is aimed at experimentally investigating multiphase flow in a horizontal well by using a 12 m length and 30 mm diameter well made of Plexiglas. Despite the importance of defining pattern transition... 

    Relative and interactive effects of fluid's physicochemical characteristics on the incipient motion of a granular particle under laminar flow condition

    , Article Journal of Hydraulic Engineering ; Volume 144, Issue 5 , 2018 ; 07339429 (ISSN) Xiao, M ; Gholizadeh Vayghan, A ; Adams, B. T ; Rajabipour, F ; Sharif University of Technology
    American Society of Civil Engineers (ASCE)  2018
    Abstract
    This paper presents an experimental research for studying the relative and interactive effects of three physicochemical fluid characteristics (viscosity, pH, and ionic strength) on the incipient motion of a granular particle under laminar flow condition. Critical flow velocity for particle's incipient motion, an important factor for evaluating flow-induced soil erosion, was used to quantify the relative erosive capacity of the test fluids. Response surface methodology (RSM), a statistical design of experiments, was used to design and implement 20 test fluids with various levels of the three fluid characteristics. Incipient motion of a highly spherical glass bead positioned atop a specially... 

    Direct simulation Monte Carlo solution of subsonic flow through micro/nanoscale channels

    , Article Journal of Heat Transfer ; Volume 131, Issue 9 , 2009 , Pages 1-8 ; 00221481 (ISSN) Roohi, E ; Darbandi, M ; Mirjalili, V ; Sharif University of Technology
    2009
    Abstract
    We use a direct simulation Monte Carlo (DSMC) method to simulate gas heating/cooling and choked subsonic flows in micro/nanoscale channels subject to either constant wall temperature or constant/variable heat flux boundary conditions. We show the effects of applying various boundary conditions on the mass flow rate and the flow parameters. We also show that it is necessary to add a buffer zone at the end of the channel if we wish to simulate more realistic conditions at the channel outlet. We also discuss why applying equilibrium-based Maxwellian distribution on molecules coming from the channel outlet, where the flow is nonequilibrium, will not disturb the DSMC solution. The current... 

    Phosphorus transport in intensively managed watersheds

    , Article Water Resources Research ; Volume 55, Issue 11 , 2019 , Pages 9148-9172 ; 00431397 (ISSN) Dolph, C. L ; Boardman, E ; Danesh Yazdi, M ; Finlay, J. C ; Hansen, A. T ; Baker, A. C ; Dalzell, B ; Sharif University of Technology]
    Blackwell Publishing Ltd  2019
    Abstract
    Understanding controls of P movement through watersheds are essential for improved landscape management in intensively managed regions. Here, we analyze observational data from 104 gaged river sites and 176 nongaged river sites within agriculturally dominated watersheds of Minnesota, USA, to understand the role of landscape features, land use practices, climate variability, and biogeochemical processes in total, dissolved and particulate P dynamics at daily to annual scales. Our analyses demonstrate that factors mediating P concentration-discharge relationships varied greatly across watersheds and included near-channel sediment sources, lake and wetland interception, assimilation by algal P,... 

    Investigation of flame structure and precessing vortex core instability of a gas turbine model combustor with different swirler configurations

    , Article Physics of Fluids ; Volume 34, Issue 8 , 2022 ; 10706631 (ISSN) Mardani, A ; Asadi, B ; Beige, A. A ; Sharif University of Technology
    American Institute of Physics Inc  2022
    Abstract
    Numerical simulation of a dual-swirl gas turbine model combustor is performed under cold and reacting flow conditions using a three-dimensional unsteady Reynolds-averaged Navier-Stokes approach. A multi-species chemical mechanism is used in this study for the analysis of the numerous radicals participating in the ignition process and the flame structure. The other objective of this study is to investigate the flow field under different injector configurations, including both co-rotating and counter-rotating swirler arrangements, different swirl intensities, and vane areas. A comparison of the results with experimental data shows that the predicted velocity and temperature profiles follow the... 

    Implementing a high-order accurate implicit operator scheme for solving steady incompressible viscous flows using artificial compressibility method

    , Article International Journal for Numerical Methods in Fluids ; Volume 66, Issue 8 , July , 2011 , Pages 939-962 ; 02712091 (ISSN) Hejranfar, K ; Khajeh Saeed, A ; Sharif University of Technology
    2011
    Abstract
    This paper uses a fourth-order compact finite-difference scheme for solving steady incompressible flows. The high-order compact method applied is an alternating direction implicit operator scheme, which has been used by Ekaterinaris for computing two-dimensional compressible flows. Herein, this numerical scheme is efficiently implemented to solve the incompressible Navier-Stokes equations in the primitive variables formulation using the artificial compressibility method. For space discretizing the convective fluxes, fourth-order centered spatial accuracy of the implicit operators is efficiently obtained by performing compact space differentiation in which the method uses block-tridiagonal... 

    Intelligent regime recognition in upward vertical gas-liquid two phase flow using neural network techniques

    , Article American Society of Mechanical Engineers, Fluids Engineering Division (Publication) FEDSM, 1 August 2010 through 5 August 2010, Montreal, QC ; Volume 2 , 2010 , Pages 293-302 ; 08888116 (ISSN) ; 9780791849491 (ISBN) Ghanbarzadeh, S ; Hanafizadeh, P ; Saidi, M. H ; Bozorgmehry Boozarjomehry, R ; Sharif University of Technology
    2010
    Abstract
    In order to safe design and optimize performance of some industrial systems, it's often needed to categorize two-phase flow into different regimes. In each flow regime, flow conditions have similar geometric and hydrodynamic characteristics. Traditionally, flow regime identification was carried out by flow visualization or instrumental indicators. In this research3 kind of neural networks have been used to predict system characteristic and flow regime, and results of them were compared: radial basis function neural networks, self organized and Multilayer perceptrons (supervised) neural networks. The data bank contains experimental pressure signalfor a wide range of operational conditions in... 

    Approximate method of determining the optimum cross section of microhannel heat sink

    , Article Journal of Mechanical Science and Technology ; Volume 23, Issue 12 , 2010 , Pages 3448-3458 ; 1738494X (ISSN) Asgari, O ; Saidi, M.H ; Sharif University of Technology
    2010
    Abstract
    Microchannels are at the forefront of today's cooling technologies. They are widely being considered for cooling of electronic devices and in micro heat exchanger systems due to their ease of manufacture. One issue which arises in the use of microchannels is related to the small length scale of the channel or channel cross-section. In this work, the maximum heat transfer and the optimum geometry for a given pressure loss have been calculated for forced convective heat transfer in microchannels of various cross-section having finite volume for laminar flow conditions. Solutions are presented for 10 different channel cross sections: parallel plate channel, circular duct, rectangular channel,... 

    Pulsatile flow of viscous and viscoelastic fluids in constricted tubes

    , Article Journal of Mechanical Science and Technology ; Volume 23, Issue 9 , 2009 , Pages 2456-2467 ; 1738494X (ISSN) Javadzadegan, A ; Esmaeili, M ; Majidi, S ; Fakhimghanbarzadeh, B ; Sharif University of Technology
    2009
    Abstract
    The unsteady flow of blood through stenosed artery, driven by an oscillatory pressure gradient, is studied. An appropriate shape of the time-dependent stenoses which are overlapped in the realm of the formation of arterial narrowing is constructed mathematically. A msathematical model is developed by treating blood as a non-Newtonian fluid characterized by the Oldroyd-B and Cross models. A numerical scheme has been used to solve the unsteady nonlinear Navier-stokes equations in cylindrical coordinate system governing flow, assuming axial symmetry under laminar flow condition so that the problem effectively becomes two-dimensional. Finite difference technique was used to investigate the... 

    Investigation of valve-closing law on the maximum head rise of a hydropower plant

    , Article Scientia Iranica ; Volume 16, Issue 3 B , 2009 , Pages 222-228 ; 10263098 (ISSN) Vakil, A ; Firoozabadi, B ; Sharif University of Technology
    2009
    Abstract
    Piping systems commonly experience the transient-state situation as the result of changes to flow conditions during pump failures, valve closures or turbine load rejection. This paper addresses transients as a consequence of the load rejection of a Francis hydropower plant (Karun 4, Ahwaz, Iran). To control the turbine system and related equipment during load rejection, the valve closing law of wicket gates is of paramount importance. The pressure rise at the end of the pressure shaft, the pressure drop in the draft tube and the speed rise while the electromagnetic braking torque disappears are solely dependent on the closing curve. Thus, an optimum closing law can eliminate the probable...