Loading...
Search for: flow-instabilities
0.005 seconds

    Experimental investigation of effects of mach number on the flow instability in a supersonic inlet

    , Article Experimental Techniques ; Volume 37, Issue 3 , 2013 , Pages 46-54 ; 07328818 (ISSN) Soltani, M. R ; Farahani, M ; Sharif University of Technology
    2013
    Abstract
    An extensive wind tunnel tests were conducted on an axisymmetric supersonic inlet at Mach numbers from 1.8 to 2.2 and at different values of mass flow rates. Frequencies of the buzz were achieved from the pressure data as well as the high speed shadowgraph pictures. For each Mach number, two main frequencies for the buzz were obtained. The inlet at its design condition was stable, but when the mass flow rate was reduced, at first the shock wave started to oscillate with a small amplitude which is matched the Ferri criterion (little buzz). In this situation, both high- and low-frequency oscillations occurred; however, the high frequency one was dominant, but the oscillations seemed to be... 

    Parametric study of tip clearance - Casing treatment on performance and stability of a transonic axial compressor

    , Article Journal of Turbomachinery ; Volume 126, Issue 4 , 2004 , Pages 527-535 ; 0889504X (ISSN) Beheshti, B. H ; Teixeira, J. A ; Ivey, P. C ; Ghorbanian, K ; Farhanieh, B ; Sharif University of Technology
    2004
    Abstract
    The control of tip leakage flow through the clearance gap between the moving and stationary components of rotating machines is still a high-leverage area for improvement of stability and performance of aircraft engines. Losses in the form of flow separation, stall, and reduced rotor work efficiency are results of the tip leakage vortex (TLV) generated by interaction of the main flow and the tip leakage jet induced by the blade pressure difference. The effects are more detrimental in transonic compressors due to the interaction of shock TLV. It has been previously shown that the use of slots and grooves in the casing over tip of the compressor blades, known as casing treatment, can... 

    Parametric study of tip clearance - Casing treatment on performance and stability of a transonic axial compressor

    , Article 2004 ASME Turbo Expo, Vienna, 14 June 2004 through 17 June 2004 ; Volume 5 A , 2004 , Pages 395-404 Beheshti, B. H ; Teixeira, J. A ; Ivey, P. C ; Ghorbanian, K ; Farhanieh, B ; Sharif University of Technology
    American Society of Mechanical Engineers  2004
    Abstract
    The control of tip leakage flow (TLF) through the clearance gap between the moving and stationary components of rotating machines is still a high-leverage area for improvement of stability and performance of aircraft engines. Losses in the form of flow separation, stall, and reduced rotor work efficiency are results of the tip leakage vortex (TLV) generated by interaction of the main flow and the tip leakage jet induced by the blade pressure difference. The effects are more detrimental in transonic compressors due to the interaction of shock-TL V. It has been previously shown that the use of slots and grooves in the casing over tip of the compressor blades, known as casing treatment, can... 

    Study of buzz phenomenon using visualization of external shock structure

    , Article Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering ; 2018 ; 09544100 (ISSN) Farahani, M ; Jaberi, A ; Sharif University of Technology
    SAGE Publications Ltd  2018
    Abstract
    An experimental study was carried out on an axisymmetric supersonic inlet with external compression in order to investigate the buzz phenomenon at different angles of attack and mass flow rates. The model was equipped with accurate and high-frequency pressure sensors, and the tests were conducted at Mach numbers varying from 1.8 to 2.5, for various angles of attack. Shadowgraph visualization technique, together with a high-speed camera, was used to provide the visual description of the shock structure in front of the inlet and to study the characteristics of buzz. Furthermore, pressure distribution over the spike surface was measured using several pressure sensors. Frequency of the buzz and... 

    Study of buzz phenomenon using visualization of external shock structure

    , Article Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering ; Volume 233, Issue 7 , 2019 , Pages 2690-2698 ; 09544100 (ISSN) Farahani, M ; Jaberi, A ; Sharif University of Technology
    SAGE Publications Ltd  2019
    Abstract
    An experimental study was carried out on an axisymmetric supersonic inlet with external compression in order to investigate the buzz phenomenon at different angles of attack and mass flow rates. The model was equipped with accurate and high-frequency pressure sensors, and the tests were conducted at Mach numbers varying from 1.8 to 2.5, for various angles of attack. Shadowgraph visualization technique, together with a high-speed camera, was used to provide the visual description of the shock structure in front of the inlet and to study the characteristics of buzz. Furthermore, pressure distribution over the spike surface was measured using several pressure sensors. Frequency of the buzz and... 

    Study of buzz phenomenon using visualization of external shock structure

    , Article Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering ; Volume 233, Issue 7 , 2019 , Pages 2690-2698 ; 09544100 (ISSN) Farahani, M ; Jaberi, A ; Sharif University of Technology
    SAGE Publications Ltd  2019
    Abstract
    An experimental study was carried out on an axisymmetric supersonic inlet with external compression in order to investigate the buzz phenomenon at different angles of attack and mass flow rates. The model was equipped with accurate and high-frequency pressure sensors, and the tests were conducted at Mach numbers varying from 1.8 to 2.5, for various angles of attack. Shadowgraph visualization technique, together with a high-speed camera, was used to provide the visual description of the shock structure in front of the inlet and to study the characteristics of buzz. Furthermore, pressure distribution over the spike surface was measured using several pressure sensors. Frequency of the buzz and... 

    Experimental investigation of flow instability in a supersonic inlet

    , Article ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis, ESDA2010, 12 July 2010 through 14 July 2010, Istanbul ; Volume 3 , 2010 , Pages 515-521 ; 9780791849170 (ISBN) Soltani, M. R ; Farahani, M ; Sharif University of Technology
    2010
    Abstract
    An extensive wind tunnel test series were conducted on an axisymmetric supersonic inlet. The model was tested at Mach numbers from 1.8 to 2.2 and at different values of mass flow rate. Shadowgraph flow visualization was used to capture the external shock structure in front of the inlet. The goal of this study is to find out the general characteristics of the inlet buzz. Frequencies of the buzz have been achieved from the analysis of the pressure data as well as the shadowgraph pictures. The amplitude of the shock waves motion has been measured from the visualization pictures too. In the some large value of mass flow rate, the frequency of shock oscillation increased versus Mach number. Also... 

    Flow Instability in an Axisymmetric Supersonic Inlet

    , Ph.D. Dissertation Sharif University of Technology Farahani, Mohammad (Author) ; Soltani, Mohammad Reza (Supervisor) ; Massoud, Afshin (Co-Advisor)
    Abstract
    Buzz is a phenomenon caused by the self-sustained shock oscillations in most supersonic inlets. When the entering mass flow is reduced below a specific value, inlet buzz occurs and results in variations of both inlet mass flow and pressure. An extensive wind tunnel tests were conducted on an axisymmetric supersonic inlet at Mach numbers from 1.8 to 2.2, at different values of mass flow rates, and at various angles of attack, α=0-10 degrees, to study the inlet buzz phenomenon. For each test, pressure distributions over the inlet cowl and spike were measured and the flow was visualized by means of the shadowgraph system and a high speed camera to obtain main performance characteristics of the... 

    An experimental investigation of transition point over a quasi-2D swept wing by using hot film

    , Article Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering ; Volume 229, Issue 2 , February , 2015 , Pages 243-255 ; 09544100 (ISSN) Hassanzadeh Khakmardani, M ; Soltani, M. R ; Masdari, M ; Davari, A ; Sharif University of Technology
    SAGE Publications Ltd  2015
    Abstract
    In this study, we performed experiments to investigate the effect of sweep angle on the transition location of laminar flow to turbulent flow. Three half wing models were used, each having a different sweep angle but with the same aspect ratio in various angles of attack. Two flat plates were used at the ends of the swept wing models to prevent the flow from rolling up over the wing. By simulating flow over infinity swept wing by eliminating tip vertices, the effect of sweep angle on flow transition phenomenon was investigated. The experiments included the study of transition flow via hot-film sensors, which were glued on the wing surface. We found that the small leading-edge radius and low... 

    Experimental investigation of leading-edge roughness effects on stationary crossflow instability of a swept wing

    , Article Scientia Iranica ; Volume 20, Issue 3 , 2013 , Pages 524-534 ; 10263098 (ISSN) Soltani, M. R ; Masdari, M ; Damghani, H ; Sharif University of Technology
    2013
    Abstract
    Wind tunnel experiments were conducted to evaluate surface pressure distribution over a semi span swept wing with a sweep angle of 33°. The wing section has a laminar flow airfoil similar to that of the NACA 6-series. The tests were conducted at speeds ranging from 50 to 70 m/s with and without surface roughness. Surface static pressure was measured on the wing upper surface at three different chordwise rows located at the inboard, middle, and outboard stations. The differences between pressure distributions on the three sections of the wing were studied and the experimental results showed that roughness elements do not influence the pressure distribution significantly, except at the inboard... 

    High temperature deformation and processing map of a NiTi intermetallic alloy

    , Article Intermetallics ; Volume 19, Issue 10 , October , 2011 , Pages 1399-1404 ; 09669795 (ISSN) Morakabati, M ; Aboutalebi, M ; Kheirandish, S ; Karimi Taheri, A ; Abbasi, S. M ; Sharif University of Technology
    2011
    Abstract
    The deformation behavior of a 49.8 Ni-50.2 Ti (at pct) alloy was investigated using the hot compression test in the temperature range of 700 °C-1100 °C, and strain rate of 0.001 s-1 to 1 s-1. The hot tensile test of the alloy was also considered to assist explaining the related deformation mechanism within the same temperature range and the strain rate of 0.1 s-1. The processing map of the alloy was developed to evaluate the efficiency of hot deformation and to identify the instability regions of the flow. The peak efficiency of 24-28% was achieved at temperature range of 900 °C-1000 °C, and strain rates higher than 0.01 s -1 in the processing map. The hot ductility and the deformation... 

    A study on the hot workability of wrought NiTi shape memory alloy

    , Article Materials Science and Engineering A ; Volume 528, Issue 18 , July , 2011 , Pages 5656-5663 ; 09215093 (ISSN) Morakabati, M ; Kheirandish, S ; Aboutalebi, M ; Taheri, A. K ; Abbasi, S. M ; Sharif University of Technology
    2011
    Abstract
    The hot workability of a wrought 49.8 Ni-50.2 Ti (at pct) alloy was assessed using the hot compression tests in temperature range of 700-1000°C, strain rate of 0.001-1s-1, and the total strain of 0.7. The constitutive equations of Arrhenius-type hyperbolic-sine function was used to describe the flow stress as a function of strain rate and temperature. The preferable regions for hot workability of the alloy were achieved at Z (Zener-Holloman parameter) values of about 109-1013 corresponding to the peak efficiency of 20-30% in the processing map. However, a narrow area in the processing map including the deformation temperature of 1000°C and strain rate of 1s-1 is inconsistent with the related...