Loading...
Search for: flow-interactions
0.003 seconds
Total 27 records

    Viscous wave interaction due to motion of a surface wave over a sediment bed

    , Article Journal of Offshore Mechanics and Arctic Engineering ; Volume 128, Issue 4 , 2006 , Pages 276-279 ; 08927219 (ISSN) Jamali, M ; Lawrence, G. A ; Sharif University of Technology
    2006
    Abstract
    The results of a flume experiment and a theoretical study of surface wave motion over a fluidized bed are presented. It is shown that a resonant wave interaction between a surface wave and two interfacial waves at the interface of the fresh water and the fluidized bed is a strong mechanism for instability of the interface and the subsequent mixing of the layers. The interfacial waves are subharmonic to the surface wave and form a standing wave at the interface. The interaction is investigated theoretically using a viscous interaction analysis. It is shown that surface wave height and viscous effects are the determining factors in the instability mechanism. The results indicate that the net... 

    Operation Analysis of an Open Cycle Thermoacoustic Refrigerator with Mean Flow

    , M.Sc. Thesis Sharif University of Technology Sadri, Maryam (Author) ; Ghorbanian, Kaveh (Supervisor)
    Abstract
    In this thesis, flow-through (or open cycle), standing wave thermoacoustic refrigerator is investigated. The system has the characteristics that the working fluid travels through the system in an oscillatory mode with a mean flow. This type of thermoacoustic refrigerator enables the working fluid to reach the desired cold temperature without passing through the usually required cold heat exchanger. Consequently, the cold heat exchanger subsystem becomes redundant and the entire system becomes less complex and lower in fabrication costs. In this research, while the hot and cold temperatures are fixed, a parametric study is performed to determine the alteration in performance due to the... 

    Computational Simulation of an Incompressible/ Compressible Turbulent Jet-into-crossflow – An Innovation in Film Cooling

    , Ph.D. Dissertation Sharif University of Technology Javadi, Khodayar (Author) ; Taeibi-Rahni, Mohammad (Supervisor) ; Darbandi, Masoud (Supervisor)
    Abstract
    This work deals with the computational investigation of film cooling technique, which is one the best practical way to protect gas turbine components form high thermal loads. In this regards, previous works are extensively reviewed and most important effective parameters are classified into three general categories, as geometrical parameters, flow characteristics, and physical surface factors. Each of these categories is then divided into subcategories and more details studies of each are performed. Then, a novel near-wall flow control technique of using staggered arrangement of small injection ports near a film cooling hole (combined-triple-jet; CTJ) is introduced. The fluid injected from... 

    Experimental Study of an Electrospray and It's Application in Gaseous Cross Flow

    , M.Sc. Thesis Sharif University of Technology Rahbari, Nina (Author) ; Morad, Mohammad Reza (Supervisor)
    Abstract
    The purpose of this project is investigating the effect of cross flow and electric field on a liquid simple-jet experimentally. In this research the effect of parameters such as liquid to air momentum ratio, electric field on jet trajectory, penetration and the lenght of breakup point with respect to the jet outlet were studied. The air was produced by a blower in a duct with square test section of 8 cm sides. The air velocity varied from 1 m/s to 11 m/s. Liquid ethanol was injected into the duct with a needle with outer diameter of 0/62 mm and inner diameter of 0.4 mm and 28 mm length. The velocity of jet was 0/62 m/s while the change of liquid to air momentum ratio was from 3 to 260 The... 

    A Nonlinear Transmission Line Model for the Relativistic Magnetron

    , M.Sc. Thesis Sharif University of Technology Heyrani Nobari, Ali (Author) ; Farzaneh, Forouhar (Supervisor) ; Hashemi, Morad Ali (Co-Supervisor)
    Abstract
    Magnetron is one of the microwave-generating devices that operates based on the microwave-electron flow interaction in the active region of the tube, which is affected by the resonant cavities and It is used in a wide range of power (from kW range at home microwave ovens to several GW in relativistic high power magnetrons and the frequencies from the order of few too MHz to tens of GHz). Although nowday's low-power generators based on transistors have replaced microwave generating tubes and even MW radio transmitters are made based on the combination of semiconductor microwave generators, but in the production of RF pulses at higher frequencies and powers, the electron tubes are the main... 

    Effective potential of longitudinal interactions between microtubule protofilaments

    , Article Physical Review E - Statistical, Nonlinear, and Soft Matter Physics ; Volume 78, Issue 1 , 2008 ; 15393755 (ISSN) Neek Amal, M ; Hamedani Radja, N ; Ejtehadi, M. R ; Sharif University of Technology
    2008
    Abstract
    An effective potential for longitudinal interactions between adjacent protofilaments in a microtubule is introduced. Our proposed interaction potential is a periodic and continuous function of the offset between two protofilaments, which also incorporates the bending energy of protofilaments. This potential produces the results of atomistic simulations. Further, using the potential, a Monte Carlo simulation gives results for the skew angles of observed structures that are in good agreement with experiments. © 2008 The American Physical Society  

    A stable moving-particle semi-implicit method for free surface flows

    , Article Fluid Dynamics Research ; Volume 38, Issue 4 , 2006 , Pages 241-256 ; 01695983 (ISSN) Ataie Ashtiani, B ; Farhadi, L ; Sharif University of Technology
    2006
    Abstract
    In this paper, a mesh-less numerical approach is utilized to solve Euler's equation that is the governing equation of the irrotational flow of ideal fluids. A fractional step method of discritization is applied which consists to split each time step in two steps. This numerical method is based on moving-particle semi-implicit method (MPS) for simulating incompressible inviscid flows with free surfaces. The motion of each particle is calculated through interactions with neighboring particles covered with the kernel function. There are limitations for getting a stable solution by MPS method. In this paper, various kernel functions are considered and applied to improve the stability of MPS... 

    Numerical Analysis of a Supersonic Jet into a Subsonic Compressible Crossflow and the Effects on a Downstream Fin

    , M.Sc. Thesis Sharif University of Technology Mohammadi, Masoud (Author) ; Tayyebi Rahni, Mohammad (Supervisor)
    Abstract
    Jet into cross-flow interaction is one of the complex and fundamental problems in fluids dynamics and heat transfer, which is observed in various applications, such as pollutant discharges, film cooing of turbine blades, combustion chamber design of jet engines, trust vectoring systems, boundary layer control, and vertical short take-off and landing (VSTOL) aircrafts. One of the applications of this kind of flow is injection of supersonic jet into subsonic compressible cross-flow, which is used in trust vectoring systems of missiles. In this research, the two-dimensional interactions of supersonic jet into subsonic compressible cross-flow were investigated as two cases: "without a fin" and... 

    Numerical Simulation of Incompressible Film Cooling, Using Compound Triple Jets and Large Eddy Simulation Approach

    , M.Sc. Thesis Sharif University of Technology Farhadi Azar, Roozbeh (Author) ; Taeibi-Rahni, Mohammad (Supervisor) ; Ramezanizadeh, Mahdi (Co-Advisor)
    Abstract
    The interactions between jets and cross flows appear in many engineering applications (such as film cooling) and thus their study is of great importance. In film cooling, the coolant fluid is transferred from the compressor to the surface of the turbine blades via small holes. An increase of about 170⁰C of the engine working temperature increases the engine efficiency about 5%. To reach higher temperatures of the inlet air flow, one tries to have the least amount of interactions between the film cooling jets and the the cross flow. In this work, we computationally studied turbulent film cooling of a flat plate, in which we used the combined triple jet and investigated the effects of density... 

    Investigation of Flow over a Fin Located Downstream of a Supersonic Jet into Subsonic Crossflow

    , Ph.D. Dissertation Sharif University of Technology Hojaji Najafabadi, Mohammad (Author) ; Tayyebi Rahni, Mohammad (Supervisor) ; Soltani, Mohammad Reza (Co-Advisor)
    Abstract
    The problem of jet into a cross flow is one of the classic problems in fluid mechanics and has many engineering applications, such as in vector thrust control systems. Although many works have been done in this field, there have not been enough research in interactions of supersonic jets into compressible subsonic cross flows (specially its interaction with control surfaces downstream). Hence, the purpose of this research is to get better understanding of this interaction and its effects on control surfaces downstream (both numerical and experimental). Some of the individual achievements of this research are the design and manufacturing of supersonic jet system, parametric study of: boundary... 

    Computational Simulation of a Pre-swirl Incompressible Turbulent Jet-into-Cross-Flow Problem, Using LES Approach

    , M.Sc. Thesis Sharif University of Technology Banyassady, Rayhaneh (Author) ; Taeibi Rahni, Mohammad (Supervisor) ; Ramezanizadeh, Mahdi (Co-Advisor)
    Abstract
    Injection of jet into cross-flow has various applications, such as film cooling of gas turbine blades, reaction control jets for missiles and aircrafts, and mixing of air and fuel in combustion chambers. Velocity ratio (blowing ratio), momentum ratio, and streamwise jet inclination angle are important correlation parameters which have been studied extensively. However, not much work has been done on the jet swirling effects. The present work investigates computational simulation of a row of swirling square jets injected normally into a cross-flow. The swirl is introduced using two injectors discharged normally into the jet. Computational simulations were performed using LES approach with... 

    Coordination of large-scale systems using a new interaction prediction approach

    , Article Proceedings of the Annual Southeastern Symposium on System Theory, 16 March 2008 through 18 March 2008, New Orleans, LA ; 2008 , Pages 385-389 ; 9781424418060 (ISBN) Sadati, N ; Ramezani, M. H ; Sharif University of Technology
    2008
    Abstract
    In this paper, a new interaction prediction approach is presented for optimal control of nonlinear large-scale systems. The proposed approach uses a new gradient-type coordination scheme which has a larger convergence region with respect to the parameters' variation, and also has a good convergence rate. In this approach, the coordination vector is updated using the gradient of coordination error. This type of coordination considerably reduces the number of iterations. The robustness and the convergence rate of the proposed approach against the best classical interaction prediction approaches are shown through simulations of a benchmark problem. © 2008 IEEE  

    The role of flame–flow interactions on lean premixed lifted flame stabilization in a low swirl flow

    , Article Combustion Science and Technology ; 2021 ; 00102202 (ISSN) Shahsavari, M ; Farshchi, M ; Arabnejad, M. H ; Wang, B ; Sharif University of Technology
    Taylor and Francis Ltd  2021
    Abstract
    Swirling flows have been widely used to stabilize lean premixed combustion in various gas turbines and furnaces. In such flows, understanding and characterizing the flame stabilization are of both practical and fundamental interests. It is known that the swirling motion decreases the flow velocity at the burner outlet, which contributes to flame stabilization. In low swirl flows, such a deceleration stabilizes a premixed flame aerodynamically. The present investigations, using large eddy simulations, study flame–flow interactions in lean premixed lifted flame stabilized in a low swirl flow. The results show that in addition to the swirling motion, combustion heat release reduces axial... 

    Investigation of Longitudinal Tabs Effects on Compound Triple Jets Configuration in Film Cooling, Applying Large Eddy Simulation Approach

    , M.Sc. Thesis Sharif University of Technology Mehrjoo, Amir Reza (Author) ; Taeibi Rahni, Mohamad (Supervisor) ; Ramezanizadeh, Mehdi (Supervisor)
    Abstract
    In the present work, large eddy simulation approach was employed to investigate flows such as backward facing step and internal channel flow, using Smagorinsky and explicit algebraic subgrid-scale models (EASSM) in OpenFOAM software. For this purpose, an explicit algebraic subgrid-scale model was added to OpenFOAM. Coupling pressure and velocity fields were applied to the PISO-SIMPLE (PIMPLE) algorithm. The focus of the present study was to assess various subgrid scale models, in order to predict the behavior of several flows, as well as their extensive numerical study. The results were compared to available experimental data showning that the EASSM results were more accurate than... 

    Dynamic stability analysis of single walled carbon nanocone conveying fluid

    , Article Computational Materials Science ; Volume 113 , 2016 , Pages 123-132 ; 09270256 (ISSN) Rasouli Gandomani, M ; Noorian, M. A ; Haddadpour, H ; Fotouhi, M. M ; Sharif University of Technology
    Elsevier  2016
    Abstract
    This report aims the study of dynamic stability of single walled carbon nanocone for some axial length conditions and declination angles of 60°, 120°and 240°. For dynamic stability analysis of Single Walled Carbon Nanocone (SWCNC), the mode shapes and frequencies of the carbon nanocone are extracted using the molecular mechanics approach. The mechanical properties of SWCNC were obtained by the Molecular Mechanics (MM) method. The obtained parameters are used for extraction of the conical shell virtual model of nanocone with the same dimensions. The equations of coupled fluid-structural dynamics of SWCNC are derived using the modal expansion for the structural displacements of the conical... 

    Stability analysis of elastic launch vehicles with fuel sloshing in planar flight using a BEM-FEM model

    , Article Aerospace Science and Technology ; Volume 53 , 2016 , Pages 74-84 ; 12709638 (ISSN) Noorian, M. A ; Haddadpour, H ; Ebrahimian, M ; Sharif University of Technology
    Elsevier Masson SAS  2016
    Abstract
    A numerical model is developed for investigation of coupled dynamics of fuel contained elastic launch vehicles in planar atmospheric flight. Finite element method along with the linear quasi-steady piston aerodynamic theory is used for developing an aeroelastic model. A reduced order boundary element model is used for modeling the liquid sloshing in tanks. The interaction of sloshing and aeroelasticity is studied using stability analysis of the coupled system. Results show that the slosh-aeroelastic coupling in an elastic launch vehicle occurs for low tank filling ratios and may lead to decreasing the system damping. Due to more interactions between the slosh and rigid body modes, larger... 

    Microstructure evolution and its influence on deformation mechanisms during high temperature creep of a nickel base superalloy

    , Article Materials Science and Engineering A ; Volume 499, Issue 1-2 , 2009 , Pages 445-453 ; 09215093 (ISSN) Safari, J ; Nategh, S ; Sharif University of Technology
    2009
    Abstract
    The interaction of dislocation with strengthening particles, including primary and secondary γ′, during different stages of creep of Rene-80 was investigated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). During creep of the alloy at 871 °C under stress of 290 MPa, the dislocation network was formed during the early stages of creep, and the dislocation glide and climb process were the predominant mechanism of deformation. The density of dislocation network became more populated during the later stages of the creep, and at the latest stage of the creep, primary particles shearing were observed alongside with the dislocation glide and climb. Shearing of γ′... 

    Notice of violation of IEEE publication principles: Promoting B2B integration with semantic web service technologies

    , Article 2nd Asia International Conference on Modelling and Simulation, AMS 2008, Kuala Lumpur, 13 May 2008 through 15 May 2008 ; 2008 , Pages 65-70 ; 9780769531366 (ISBN) Rokni Dezfouli, S. A ; Habibi, J ; Yeganeh, S. H ; Sharif University of Technology
    2008
    Abstract
    Several e-business frameworks are developed to define standards for information sharing within and between companies. These frameworks only standardize structure of messages and aren't able to define semantics. It leads to slow and costly dynamic Business-to-Business (B2B) integration. The use of Semantic Web Senice (SWS) technologies has been suggested to enable more dynamic B2B integration of heterogeneous systems and partners. We present a semantic B2B mediator based on the WSMX -a SWS execution environment, to tackle heterogeneities in B2B services. We particularly show how WSMX can be made to support the RosettaNet e-business framework and how it can add dynamics to B2B interactions by... 

    Motion CAPTCHA

    , Article 2008 Conference on Human System Interaction, HSI 2008, Krakow, 25 May 2008 through 27 May 2008 ; 2008 , Pages 1042-1044 ; 9781424415434 (ISBN) Shirali Shahreza, M ; Shirali Shahreza, S ; Sharif University of Technology
    2008
    Abstract
    In some websites it is necessary to distinguish between human users and computer programs which is known as CAPTCHA (Completely Automated Public Turing test to tell Computers and Human Apart). CAPTCHA methods are mainly based on the weaknesses of OCR systems while using them are undesirable to human users. In this paper a new CAPTCHA method is introduced on the basis of showing a movie of a person's action. Then we ask the user to describe the movement of that person. The user should select the sentence which describes the motion from a list of sentences. If the user chooses the right sentence we can guess that the user is a human and not a computer program. The main advantage of this method... 

    Localized identification of shear building with embedded foundation in frequency domain

    , Article Structural Design of Tall and Special Buildings ; Volume 17, Issue 2 , 2008 , Pages 245-256 ; 15417794 (ISSN) Sholeh, K ; Vafaie, A ; Kaveh, A ; Sharif University of Technology
    2008
    Abstract
    For studying the behavior of structure in an earthquake, it is advisable to model the structure as a multi-degrees of freedom system, consisting of numerous single-degree of freedom substructures and pay attention to soil-structure interaction. System identification is divided into two categories: namely time domain method and frequency domain approach. In this paper, a localized substructure identification of shear building considering the soil-structure interaction is presented using a frequency domain approach. In order to deal with noise-corrupted data, a spectral smoothing technique with Parzen's window reduction method is adapted. It is shown that better convergence and accuracy can be...