Loading...
Search for: flower-like
0.006 seconds

    Effect of TiO2 morphology on in vitro bioactivity of polycaprolactone/TiO2 nanocomposites

    , Article Materials Letters ; Volume 65, Issue 15-16 , 2011 , Pages 2530-2533 ; 0167577X (ISSN) Tamjid, E ; Bagheri, R ; Vossoughi, M ; Simchi, A ; Sharif University of Technology
    Abstract
    TiO2 nanostructures with different morphologies (spherical, tube, leaf-like and flower-like particles) were synthesized via a facile hydrothermal process. Polycaprolactone (PCL)/10 vol.% TiO2 nanocomposites were prepared by solvent casting methods. In vitro bioactivity of the nanocomposite films was examined by immersion in the simulated body fluid (SBF) for up to 28 days. It was found that the morphology of titania nanostructures significantly influence the in vitro bioactivity of PCL/TiO 2 nanocomposites. This observation was attributed to the amount of anatase phase and the specific surface area of the TiO2 nanostructures, which provide high surface exposure to SBF  

    Room temperature H2S gas sensor based on rather aligned ZnO nanorods with flower-like structures

    , Article Sensors and Actuators, B: Chemical ; Volume 207,Issue PartA , February , 2015 , Pages 865-871 ; 09254005 (ISSN) Hosseini, Z. S ; Zad, A. I ; Mortezaali, A ; Sharif University of Technology
    Elsevier  2015
    Abstract
    Rather vertically aligned ZnO rods with flower-like structures were grown on quartz substrates through vapor phase transport method. X-ray diffraction (XRD) analysis and photoluminescence (PL) measurement were performed to determine crystalline structure and defects, respectively. H2S gas sensing properties of the grown structure were investigated at both room temperature and 250 °C for comparison. A remarkable increase in response and selectivity at room temperature compared to 250 °C was observed. High response and selectivity to low concentrations of H2S at room temperature as well as good stability make the sensor a promising candidate for practical applications  

    Sensitive and selective room temperature H2S gas sensor based on Au sensitized vertical ZnO nanorods with flower-like structures

    , Article Journal of Alloys and Compounds ; Volume 628 , April , 2015 , Pages 222-229 ; 09258388 (ISSN) Hosseini, Z. S ; Mortezaali, A ; Iraji Zad, A ; Fardindoost, S ; Sharif University of Technology
    Elsevier Ltd  2015
    Abstract
    Pursuing a sensing structure with a large effective surface area, partial ordered arrays of ZnO nanorods with flower-like structures are introduced for gas sensing applications. Room temperature H2S response of the grown structure shows significant enhancement after modification with Au nanoparticles. High response (about 1270 at 6 ppm H2S gas) and selectivity were achieved by depositing an Au layer with nominal thickness ∼6 nm. X-ray photoelectron spectroscopy (XPS) was utilized to describe the H2S sensing mechanism  

    Facile template-free synthesis of the CuO microflowers with enhanced photocatalytic properties

    , Article Materials Research Innovations ; 2016 , Pages 1-5 ; 14328917 (ISSN) Ahmadi, M ; Padervand, M ; Vosoughi, M ; Roosta Azad, R ; Sharif University of Technology
    Taylor and Francis Ltd  2016
    Abstract
    CuO flower-like microcrystals, prepared by a facile template-free thermal method, showed incredible photocatalytic activity towards degradation of Acid Blue 92 (AB92), an organic wastewater, Escherichia coli and Staphylococcus aureus pathogenic bacteria under visible light. The products were well characterised by X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET), scanning electron microscope (SEM), Fourier transform infrared (FTIR), photoluminescence spectroscopy (PL) and diffuse reflectance spectra (DRS) analysis methods. The XRD pattern of the products well confirmed the formation of copper oxide crystalline phase without any other impurities. The results of the photocatalytic... 

    In-situ electrochemical exfoliation of Highly Oriented Pyrolytic Graphite as a new substrate for electrodeposition of flower like nickel hydroxide: Application as a new high-performance supercapacitor

    , Article Electrochimica Acta ; Volume 206 , 2016 , Pages 317-327 ; 00134686 (ISSN) Shahrokhian, S ; Mohammadi, R ; Amini, M. K ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    Demand for more efficient energy storage devices stimulates efforts to search and develop new materials and composites with promising properties. In this regard, composite materials, including carbonaceous materials and metal oxides have attracted a great attention due to better electrochemical performance as compared to their single material analogues. For the first time, herein, we report a new and simple procedure for preparing porous highly oriented pyrolytic graphite/nickel hydroxide composite (P-HOPG/Ni(OH)2) via a fast and simple two-step electrochemical method including potentiostatic routes. In the first step, a low anodic potential (2 V) was applied to pristine HOPG in 0.5 M H2SO4... 

    Facile template-free synthesis of the CuO microflowers with enhanced photocatalytic properties

    , Article Materials Research Innovations ; Volume 21, Issue 7 , 2017 , Pages 434-438 ; 14328917 (ISSN) Ahmadi, M ; Padervand, M ; Vosoughi, M ; Roosta Azad, R ; Sharif University of Technology
    Abstract
    CuO flower-like microcrystals, prepared by a facile template-free thermal method, showed incredible photocatalytic activity towards degradation of Acid Blue 92 (AB92), an organic wastewater, Escherichia coli and Staphylococcus aureus pathogenic bacteria under visible light. The products were well characterised by X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET), scanning electron microscope (SEM), Fourier transform infrared (FTIR), photoluminescence spectroscopy (PL) and diffuse reflectance spectra (DRS) analysis methods. The XRD pattern of the products well confirmed the formation of copper oxide crystalline phase without any other impurities. The results of the photocatalytic... 

    Electrochemical deposition of flower-like nickel nanostructures on well-defined n-si(111):h

    , Article International Journal of Engineering, Transactions B: Applications ; Volume 21, Issue 2 , 2008 , Pages 177-182 ; 1728-144X (ISSN) Torabi, M ; Khalifehzadeh, R ; Arami, H ; Sadrnezhaad, S. K ; Sharif University of Technology
    Materials and Energy Research Center  2008
    Abstract
    In this paper the electrodeposition of nickel on n-Si(111):H substrate, in the presence of sulphuric acid, was studied. Cyclic voltammetry has been used to characterize the electrochemical behavior of the system. The nickel deposits had a flower-like morphology with the spherical nanostructure nucleus, distributed uniformly on the surfaces of the prepared n-Si(111) substrate  

    Effects of morphology on photocatalytic performance of Zinc oxide nanostructures synthesized by rapid microwave irradiation methods

    , Article Superlattices and Microstructures ; Volume 51, Issue 4 , 2012 , Pages 512-522 ; 07496036 (ISSN) Kajbafvala, A ; Ghorbani, H ; Paravar, A ; Samberg, J. P ; Kajbafvala, E ; Sadrnezhaad, S. K ; Sharif University of Technology
    2012
    Abstract
    In this study, two different chemical solution methods were used to synthesize Zinc oxide nanostructures via a simple and fast microwave assisted method. Afterwards, the photocatalytic performances of the produced ZnO powders were investigated using methylene blue (MB) photodegradation with UV lamp irradiation. The obtained ZnO nanostructures showed spherical and flower-like morphologies. The average crystallite size of the flower-like and spherical nanostructures were determined to be about 55 nm and 28 nm, respectively. X-ray diffraction (XRD), scanning electronic microscopy (SEM), Brunauer-Emmett-Teller (BET), room temperature photoluminescence (RT-PL) and UV-vis analysis were used for... 

    Novel silver nano-wedges for killing microorganisms

    , Article Materials Research Bulletin ; Volume 46, Issue 11 , 2011 , Pages 1860-1865 ; 00255408 (ISSN) Pourjavadi, A ; Soleyman, R ; Sharif University of Technology
    Abstract
    In the current study, for the first time, photochemical facile green synthesis of salep capped silver nano-wedges was reported via the wet chemical synthesis procedure. Sunlight-UV as an available reducing agent caused mild reduction of silver ions to the silver nano-wedges. Salep as an effective capping/shaping polysaccharide bioresource material was used in the reaction medium and caused creation of flower-like self-assembled structures of the silver nano-wedges. The formation of silver nano-wedges and their flower-like self-assembled structures was confirmed by SEM technique. Further investigations were carried out using UV-vis, FTIR, GPC and XRD data. The prepared silver nano-wedges... 

    CVD fabrication of carbon nanotubes on electrodeposited flower-like Fe nanostructures

    , Article Journal of Alloys and Compounds ; Volume 507, Issue 2 , 2010 , Pages 494-497 ; 09258388 (ISSN) Zanganeh, S ; Torabi, M ; Kajbafvala, A ; Zanganeh, N ; Bayati, M. R ; Molaei, R ; Zargar, H.R ; Sadrnezhaad, S. K ; Sharif University of Technology
    Abstract
    Galvanostatic method was used to electrodeposit Fe nanostructures on platinum electrodes as catalysts. Scanning electron microscopy (SEM) revealed flower-like Fe deposits with high surface area. Carbon nanotubes were grown on flower-like Fe nanostructures by chemical vapor deposition. The structure of the synthesized carbon nanotubes was investigated by scanning electron microscopy, transmission electron microscopy, Raman spectroscopy and X-ray diffraction. According to X-ray diffraction patterns, Fe was the only detected constituent of the deposited coating. The carbon nanotubes had small wall-thickness and wide hollow core  

    Cyclohexene oxidation catalyzed by flower-like core-shell Fe3O4@Au/metal organic frameworks nanocomposite

    , Article Materials Chemistry and Physics ; Volume 213 , July , 2018 , Pages 472-481 ; 02540584 (ISSN) Kohantorabi, M ; Gholami, M. R ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    In this study, Fe3O4@Au/metal-organic frameworks (Fe3O4@Au/MOF) nanocomposite with flower-like core-shell structure was successfully synthesized via a hydrothermal route. The as-prepared catalyst was characterized using different techniques such as FT-IR, XRD, TEM, EDX, VSM, TGA, BET, and ICP. This nanocomposite exhibited an excellent catalytic performance in selective oxidation of cyclohexene to 2-cyclohexene-1-one by using molecular oxygen as green oxidant. The influence of reaction conditions including, pressure of molecular oxygen, temperature, time, solvent, and amount of catalyst on conversion and selectivity of products were evaluated. The activation energy (Ea) of the reaction was... 

    Hydrogen sensing properties of nanocomposite graphene oxide/Co-based metal organic frameworks (Co-MOFs@GO)

    , Article Nanotechnology ; Volume 29, Issue 1 , 2018 ; 09574484 (ISSN) Fardindoost, S ; Hatamie, S ; Zad, A. I ; Astaraei, F. R ; Sharif University of Technology
    Institute of Physics Publishing  2018
    Abstract
    This paper reports on hydrogen sensing based graphene oxide hybrid with Co-based metal organic frameworks (Co-MOFs@GO) prepared by the hydrothermal process. The texture and morphology of the hybrid were characterized by powder x-ray diffraction, scanning electron microscopy and Brunauer-Emmett-Teller analysis. Porous flower like structures assembled from Co-MOFs and GO flakes with sufficient specific surface area are obtained, which are ideal for gas molecules diffusion and interactions. Sensing performance of Co-MOFs@GO were tested and also improved by sputtering platinum (Pt) as a catalyst. The Pt-sputtered Co-MOFs@GO show outstanding hydrogen resistive-sensing with response and recovery... 

    Effect of morphology on the solar photocatalytic behavior of ZnO nanostructures

    , Article Journal of Alloys and Compounds ; Volume 485, Issue 1-2 , 2009 , Pages 616-620 ; 09258388 (ISSN) Mohajerani, M ; Lak, A ; Simchi, A ; Sharif University of Technology
    2009
    Abstract
    ZnO nanostructures in the shape of particle, rods, flower-like and micro-sphere were synthesized via facile hydrothermal methods and the effect of morphology on the decolorization of CI Acid Red 27 solution under direct irradiation of sunlight was investigated. XRD patterns showed that the synthesized nanostructures have Wurtzite-type hexagonal structure with high crystallinity and crystallite size in the range of 67-100 nm. UV-vis absorption spectra indicated that the ZnO nanorods have higher visible light harvesting as compared to the other morphologies. The decolorization obeys the first order kinetics rate with the kinetics constant of 4.5-19.5 × 10-3 min-1 dependent on the ZnO...