Loading...
Search for: fluorescence-sensors
0.016 seconds

    Synthesis of CdTe Quantum Dots for Light Emitting Diodes and Chemical Sensing Applications

    , Ph.D. Dissertation Sharif University of Technology Zare, Hakimeh (Author) ; Akhavan, Omid (Supervisor) ; Taghavinia, Nima (Supervisor)
    Abstract
    Luminescent semiconductor nanocrystals otherwise known as quantum dots (QDs) have attracted intense interest over the past decade due to their unique properties and great potential in various applications. In this work we have studied the growth and luminescence properties of CdTe QDs and CdTe/CdS core-shell QDs and their application in hybrid organic/inorganic light-emitting diodes (LEDs) and fluorescent sensors. CdTe QDs were synthesized using a thermochemical method in aqueous phase. Central composite design (CCD) was applied to obtain the optimized conditions of the synthesis. The effects of four independent parameters including molar ratios of Cd to Te ions, TGA to Te ions, pH of the... 

    Synthesis and Comparative Study on Complex Formation of Azo-bearing Nitrogen-Donor Macrocyclic Ligands with Fullerene C60 and Cu(II) Cation

    , Ph.D. Dissertation Sharif University of Technology Mahdavian, Mahsa (Author) ; Ghanbari, Bahram (Supervisor)
    Abstract
    In the present research, a series of bimacrocyclic tweezer anchored through azobenzene moiety were synthesized and characterized by applying IR spectroscopy, 1H and 13C{1H} NMR, fluorescence spectroscopy, UV-visible spectroscopy, mass spectrometry and elemental analysis and in some cases by X-ray crystallography. Firstly, UV-visible spectroscopy established that the irradiation of the tweezers with UV light promoted the trans to cis isomerization. On the other hand, thermal cis-trans isomerization behavior of the azobenzene moiety in tweezers was surveyed in which the cis isomers were formed of the heating at 50 oC for 5 minutes. Where the -OH group was replaced with 4-toluenesulfonyl... 

    Developments of Fluorescence Sensor Arrays Using Nanostructured Sensor Elments and Nanocellulose Substrate for Identification and Discrimination of Biomolecules and Environmental pollutants

    , Ph.D. Dissertation Sharif University of Technology Abbasi-Moayed, Samira (Author) ; Hormozi-Nezhad, Mohammad Reza (Supervisor) ; Golmohammadi Ghaneh, Hamed (Co-Supervisor)
    Abstract
    In the first part of this research, a ratiometric fluorescent sensor array has been developed on nanocellulose platform towards chemical discrimination applications. Bacterial nanocellulose (BC) was utilized for the first time as a novel, flexible and transparent substrate in optical sensor arrays for developing portable and high performance sensor array.. To fabricate this platform, the hydrophobic walls on BC nanopaper substrates were successfully created using laser printing technology. In addition, we have used the properties of immobilized ratiometric fluorescence sensor elements (Carbon Dots- Rhodamine B (CDs-RhB) nanohybrids) on nanopaper platform to improve the visual... 

    Designing a Ratiometric Probe for Naked Eye Detection of Hydrogen Peroxide

    , M.Sc. Thesis Sharif University of Technology Mohammadpour, Fatemeh (Author) ; Hormozinezhad, Mohammad Reza (Supervisor)
    Abstract
    Hydrogen peroxide (H2O2) is of great importance in numerous fields such as pharmaceuticals, mining, textile, environmental and food industry. Therefore, the development of low cost, on-site, and uncomplicated H2O2 sensors are of high interest. To date, colloidal quantum dots (QDs) have been used to detect H2O2 based on the quenching of fluorescence intensity in a single wavelength. However, intensity of fluorescent signal could be easily disturbed by various factors. To overcome these undesirable effects, here, a ratiometric sensor has been developed by adding a second fluorophore (as reference) to QDs. For this purpose TGA-capped CdTe QDs were prepared. To detect H2O2, the ratiometric... 

    Design of a ratiometric fluorescent probe for naked eye detection of dopamine

    , Article Analytical Methods ; Volume 9, Issue 23 , 2017 , Pages 3505-3512 ; 17599660 (ISSN) Farahmand Nejad, M. A ; Hormozi Nezhad, M. R ; Sharif University of Technology
    Abstract
    A simple and effective ratiometric fluorescence sensor for selective detection of dopamine (DA) in alkaline media has been developed by simply mixing thioglycolic acid (TGA) functionalized orange fluorescent cadmium telluride (CdTe) quantum dots (QDs) with amino-functionalized blue fluorescent carbon nanodots (CDs). Under a single excitation wavelength of 365 nm, the sensor exhibits dual-emissions centered at 445 and 603 nm. The fluorescence of CdTe QDs is selectively quenched by DA, whereas the fluorescence of CDs is insensitive to the analyte. In the presence of different amounts of DA, the variations in the dual emission intensity ratios exhibit a continuous color change from pink to... 

    A nanopaper-based artificial tongue: a ratiometric fluorescent sensor array on bacterial nanocellulose for chemical discrimination applications

    , Article Nanoscale ; Volume 10, Issue 5 , February , 2018 , Pages 2492-2502 ; 20403364 (ISSN) Abbasi Moayed, S ; Golmohammadi, H ; Hormozi Nezhad, M. R ; Sharif University of Technology
    Royal Society of Chemistry  2018
    Abstract
    In the present study, a ratiometric fluorescent sensor array as an artificial tongue has been developed on a nanopaper platform for chemical discrimination applications. The bacterial cellulose (BC) nanopaper was utilized for the first time as a novel, flexible, and transparent substrate in the optical sensor arrays for developing high-performance artificial tongues. To fabricate this platform, the hydrophobic walls on the BC nanopaper substrates were successfully created using a laser printing technology. In addition, we have used the interesting photoluminescence (PL) properties of an immobilized ratiometric probe (carbon dot-Rhodamine B (CD-RhB) nanohybrids) on the nanopaper platform to... 

    Identification of catecholamine neurotransmitters using fluorescence sensor array

    , Article Analytica Chimica Acta ; Volume 917 , April , 2016 , Pages 85–92 ; 00032670 (ISSN) Ghasemi, F ; Hormozi Nezhad, M. R ; Mahmoudi, M ; Sharif University of Technology
    Elsevier  2016
    Abstract
    A nano-based sensor array has been developed for identification and discrimination of catecholamine neurotransmitters based on optical properties of their oxidation products under alkaline conditions. To produce distinct fluorescence response patterns for individual catecholamine, quenching of thioglycolic acid functionalized cadmium telluride (CdTe) quantum dots, by oxidation products, were employed along with the variation of fluorescence spectra of oxidation products. The spectral changes were analyzed with hierarchical cluster analysis (HCA) and principal component analysis (PCA) to identify catecholamine patterns. The proposed sensor could efficiently discriminate the individual... 

    Ratiometric fluorescent nanoprobes for visual detection: Design principles and recent advances - A review

    , Article Analytica Chimica Acta ; Volume 1079 , 2019 , Pages 30-58 ; 00032670 (ISSN) Bigdeli, A ; Ghasemi, F ; Abbasi Moayed, S ; Shahrajabian, M ; Fahimi Kashani, N ; Jafarinejad, S ; Farahmand Nejad, M. A ; Hormozi Nezhad, M. R ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    Signal generation techniques for visual detection of analytes have received a great deal of attention in various sensing fields. These approaches are considered to be advantageous when instrumentation cannot be employed, such as for on-site assays, point-of-care tests, and he althcare diagnostics in resource-constrained areas. Amongst various visual detection approaches explored for non-invasive quantitative measurements, ratiometric fluorescence sensing has received particular attention as a potential method to overcome the limitations of intensity-based probes. This technique relies on changes in the intensity of two or more emission bands (induced by an analyte), resulting in an effective... 

    Identification of catecholamine neurotransmitters using fluorescence sensor array

    , Article Analytica Chimica Acta ; Volume 917 , 2016 , Pages 85-92 ; 00032670 (ISSN) Ghasemi, F ; Hormozi Nezhad, M. R ; Mahmoudi, M ; Sharif University of Technology
    Elsevier B.V  2016
    Abstract
    A nano-based sensor array has been developed for identification and discrimination of catecholamine neurotransmitters based on optical properties of their oxidation products under alkaline conditions. To produce distinct fluorescence response patterns for individual catecholamine, quenching of thioglycolic acid functionalized cadmium telluride (CdTe) quantum dots, by oxidation products, were employed along with the variation of fluorescence spectra of oxidation products. The spectral changes were analyzed with hierarchical cluster analysis (HCA) and principal component analysis (PCA) to identify catecholamine patterns. The proposed sensor could efficiently discriminate the individual... 

    Development of a novel carboxamide-based off-on switch fluorescence sensor: Hg2+, Zn2+and Cd2+

    , Article New Journal of Chemistry ; Volume 44, Issue 27 , June , 2020 , Pages 11841-11852 Kiani, M ; Bagherzadeh, M ; Meghdadi, S ; Rabiee, N ; Abbasi, A ; Schenk Joß, K ; Tahriri, M ; Tayebi, L ; Webster, T. J ; Sharif University of Technology
    Royal Society of Chemistry  2020
    Abstract
    Here, the carboxamide ligand N-(thiazole-2-yl) picolinamide (L) was synthesized in an ionic liquid tetrabutylammonium bromide (TBAB) as the benign reaction medium. The sensitivity of L towards different metal-ions was investigated, and a comprehensive, logical optical investigation was conducted for the IIB transition metal ions, Hg2+, Cd2+ and Zn2+, based on off-on switch sensor protocols. In the absence of these metal ions, L showed weak emission only, but fluorescence intensity increased considerably upon their addition to a sensitivity range of 10-6 M. This phenomenon was enhanced significantly in the presence of Zn2+ compared to other metal ions, likely due to the coordination of...