Loading...
Search for: formation-flying
0.005 seconds

    Self-Reconfiguration & Autonomous Algorithm for Spacecraft Formation Flight Using Virtual Structure Approach

    , M.Sc. Thesis Sharif University of Technology Sharifian, Shakib (Author) ; Saghafi, Fariborz (Supervisor)
    Abstract
    One of the most important technologies in space missions is capability of moving satellites together with a predefined structure (virtual structure). This structure can reconfigure itself to any desired space mission and it is known as reconfiguration maneuver, in this maneuver all of the satellites have to follow needed virtual structure from any initial configuration to any desired second composition. In available virtual structure methods, there are a lot of limitations in maneuver because of algorithm constraints, in this project we try to extend available algorithm in virtual structure method and reach an algorithm which can start from any initial condition and complete the maneuver in... 

    Fault detection and isolation of satellite gyroscopes using relative positions in formation flying

    , Article Aerospace Science and Technology ; Volume 78 , 2018 , Pages 403-417 ; 12709638 (ISSN) Shakouri, A ; Assadian, N ; Sharif University of Technology
    Elsevier Masson SAS  2018
    Abstract
    A fault detection and isolation method for satellite rate gyros is proposed based on using the satellite-to-satellite measurements such as relative position beside orbit parameters of the primary satellite. By finding a constant of motion, it is shown that the dynamic states in a relative motion are restricted in such a way that the angular velocity vector of primary satellite lies on a quadratic surface. This constant of motion is then used to detect the gyroscope faults and estimate the corresponding scale factor or bias values of the rate gyros of the primary satellite. The proposed algorithm works even in time variant fault situations as well, and does not impose any additional... 

    Implementation of Virtual Structure Approach in Multiple Spacecraft Formation Flight Using Visual Sensors

    , M.Sc. Thesis Sharif University of Technology Saberi Tavakkoli, Mohammad (Author) ; Saghafi, Fariborz (Supervisor)
    Abstract
    In this research, it has been trying to implement Virtual Structure method for formation flight of multiple spacecraft. In this method, a virtual solid frame with virtual center of mass is considered and agents are arranged in a formation with respect to the virtual center. In this work, a formation keeping control system is implemented in which a feedback from formation to virtual structure and vice versa is considered. The method is implemented firstly in a nongradient field and then developed into a circular orbit in order to investigate the in-orbital effects. An algorithm for collision avoidance, based on relative distances and relative velocities, was also developed. The algorithm was... 

    Fault-tolerant Control of Formation Flying Satellites Using Machine Learning

    , M.Sc. Thesis Sharif University of Technology Farhang Fallah, Raouf (Author) ; Assadian, Nima (Supervisor)
    Abstract
    In this thesis, a fault-tolerant method for controlling the relative position and attitude between two satellites in a leader and follower formation is proposed. The follower satellite is equipped with twelve thrusters which are installed on the satellite in a particular pattern. These thrusters are assumed to be afflicted by faults. The satellites are subject to external disturbances – such as the ellipsoidal gravity of Earth (J2), drag force, solar radiation pressure, and the third body, and a controller is designed to attain the desired formation under these disturbances.For this purpose, six separated neural networks are trained, one for each of the position or attitude channels. Since... 

    Robust distributed control of spacecraft formation flying with adaptive network topology

    , Article Acta Astronautica ; Volume 136 , 2017 , Pages 281-296 ; 00945765 (ISSN) Shasti, B ; Alasty, A ; Assadian, N ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    In this study, the distributed six degree-of-freedom (6-DOF) coordinated control of spacecraft formation flying in low earth orbit (LEO) has been investigated. For this purpose, an accurate coupled translational and attitude relative dynamics model of the spacecraft with respect to the reference orbit (virtual leader) is presented by considering the most effective perturbation acceleration forces on LEO satellites, i.e. the second zonal harmonic and the atmospheric drag. Subsequently, the 6-DOF coordinated control of spacecraft in formation is studied. During the mission, the spacecraft communicate with each other through a switching network topology in which the weights of its graph...