Loading...

**Search for:**forward-calculation

0.013 seconds

#### Calculation of VVER-1000 reactor scaling factor for inference of core barrel motion

, Article Annals of Nuclear Energy ; Vol. 63 , 2014 , pp. 205-208 ; ISSN: 03064549 ; Vosoughi, N ; Sharif University of Technology
Abstract

To quantify the core barrel motion (CBM) in a pressurized water reactor, a scaling factor can be calculated to convert the Root Mean Square (RMS) value of the ex-core signals (%) to the core barrel motion amplitude (mil) (Thompson et al., 1980). In the current paper, a scaling factor is calculated using the direct and adjoint methods for a typical VVER-1000 reactor. The scaling factor is calculated using the perturbed parameters that result from CBM. The results show that the calculated scaling factors are not the same in one and two-dimensional modeling, and strongly depend on the ex-core detector location. The linearity assumption of relative detector response versus the small displacement...

#### Development of a 2-D 2-group neutron noise simulator for hexagonal geometries

, Article Annals of Nuclear Energy ; Volume 37, Issue 8 , 2010 , Pages 1089-1100 ; 03064549 (ISSN) ; Vosoughi, N ; Zahedinejad, E ; Sharif University of Technology
Abstract

In this paper, the development of a neutron noise simulator for hexagonal-structured reactor cores using both the forward and the adjoint methods is reported. The spatial discretisation of both 2-D 2-group static and dynamic equations is based on a developed box-scheme finite difference method for hexagonal mesh boxes. Using the power iteration method for the static calculations, the 2-group neutron flux and its adjoint with the corresponding eigenvalues are obtained by the developed static simulator. The results are then benchmarked against the well-known CITATION computer code. The dynamic calculations are performed in the frequency domain which leads to discarding of the time...