Loading...
Search for: fossil-fuel
0.005 seconds
Total 78 records

    Visible light switchable bR/TiO2 nanostructured photoanodes for bio-inspired solar energy conversion

    , Article RSC Advances ; Volume 5, Issue 24 , Jan , 2015 , Pages 18642-18646 ; 20462069 (ISSN) Naseri, N ; Janfaza, S ; Irani, R ; Sharif University of Technology
    Royal Society of Chemistry  2015
    Abstract
    Today, regarding the limitation and environmental side effects of fossil fuel resources, solar hydrogen production is one of the main interests in the energy research area. The development of visible light sensitized semiconductors based on non-toxic components, low cost and available bio-species is an ongoing approach for H2 generation based on water splitting reactions. Here, two different morphologies of TiO2 photoanodes, nanoparticulated and nanotubular, have been modified with simply extracted bacteriorhodopsin (bR) without any linker. Achieving a significant enhancement in photoconversion efficiency of TiO2 photoanodes, η% was increased from 2.9 to 16.5 by bR addition to the TiO2... 

    An overview of energy planning in Iran and transition pathways towards sustainable electricity supply sector

    , Article Renewable and Sustainable Energy Reviews ; Volume 112 , 2019 , Pages 58-74 ; 13640321 (ISSN) Aryanpur, V ; Atabaki, M. S ; Marzband, M ; Siano, P ; Ghayoumi, K ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    Despite a substantial potential of renewable energy sources, the current energy supply system in Iran relies almost entirely on fossil fuel resources. It has imposed significant financial burden on the country and has led to considerable GHG emissions. Moreover, the country is confronting several challenges for harnessing alternative clean energy sources and promoting rational energy policies over the recent decades. To probe the root cause of these problems, this paper first provides an overview on the previous energy planning attempts in Iran. It shows that adequate commitment to a long-term energy planning could have meaningfully prevented these serious challenges. However, the previous... 

    Energy supply transformation pathways in Iran to reduce GHG emissions in line with the Paris Agreement

    , Article Energy Strategy Reviews ; Volume 32 , 2020 Ghadaksaz, H ; Saboohi, Y ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Extensive dependence of the national economy on wasteful fossil fuel use as well as limited access to the international financial markets and the best available techniques over the strict economic sanctions period have hindered Iran from developing a sustainable energy system. By considering the reversal order, the present study investigated the least-cost options for improving energy efficiency and reducing GHG emissions in the energy supply sector. The essential purpose of this research work is to increase the evidence base necessary to inform policy and strategy discussions within Iran and related communities concerning the choice of GHG emissions reduction. Applying ARDL approach to... 

    Optimal design of renewable integrated heat and electricity supply systems with genetic algorithm: household application in Iran

    , Article International Journal of Environmental Science and Technology ; Volume 17, Issue 4 , 2020 , Pages 2185-2196 Rezaei Mirghaed, M ; Saboohi, Y ; Sharif University of Technology
    Springer  2020
    Abstract
    The objective of the present study is the development of an optimization model for identifying the best configuration of renewable-based integrated energy systems. The system includes a combination of renewable energy systems such as wind, solar, hydropower and hydrogen production, storage facilities and conventional fossil-fuel generators. The developed tool consists of various modules where water heating assumes the utilization of waste energy as an option. Furthermore, the application, which is demonstrated for a case study in Tehran, has been considered. The power exchange with the distribution network and injection of hydrogen produced from excess renewable sources into gas network are... 

    Optimal deployment of renewable electricity technologies in Iran and implications for emissions reductions

    , Article Energy ; Volume 91 , 2015 , Pages 882-893 ; 03605442 (ISSN) Aryanpur, V ; Shafiei, E ; Sharif University of Technology
    Elsevier Ltd  2015
    Abstract
    In this paper, special focus is paid to the long-term adoption of renewable electricity technologies and their implications for emissions reductions in Iran. MESSAGE, as a bottom-up energy supply optimization model, is used to assess the lowest-cost technology options. The potential impacts of transitioning to a renewable electricity supply are quantified, and the investment requirement to achieve a low-carbon generation mix is estimated. Alternative scenarios are defined to evaluate the impact of fossil fuel prices, the carbon tax and government incentives on the utilization of renewable resources, national renewable targets, and emissions reductions. The prioritization of non-hydro... 

    Development of a framework for the sustainability evaluation of renewable and fossil fuel power plants using integrated LCA-emergy analysis: A case study in Iran

    , Article Renewable Energy ; Volume 179 , 2021 , Pages 1548-1564 ; 09601481 (ISSN) Alizadeh, S ; Avami, A ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    This study presents a comprehensive framework for evaluating renewable and non-renewable power plants' performance using the Life Cycle Analysis (LCA) and emergy analysis. The emergy analysis is used to consider the free ecosystem services in the sustainability of the systems as a supplement to the LCA. The results indicate that the wind and photovoltaic power plants have the best performance in terms of the LCA analysis, while the wind and combined cycle power plants have the highest emergy sustainability index. The best scenario is chosen under a two-objective optimization problem, including the single score and emergy sustainability as objective functions. Here, the wind power plant is... 

    Development of a framework for the sustainability evaluation of renewable and fossil fuel power plants using integrated LCA-emergy analysis: a case study in Iran

    , Article Renewable Energy ; Volume 179 , 2021 , Pages 1548-1564 ; 09601481 (ISSN) Alizadeh, S ; Avami, A ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    This study presents a comprehensive framework for evaluating renewable and non-renewable power plants' performance using the Life Cycle Analysis (LCA) and emergy analysis. The emergy analysis is used to consider the free ecosystem services in the sustainability of the systems as a supplement to the LCA. The results indicate that the wind and photovoltaic power plants have the best performance in terms of the LCA analysis, while the wind and combined cycle power plants have the highest emergy sustainability index. The best scenario is chosen under a two-objective optimization problem, including the single score and emergy sustainability as objective functions. Here, the wind power plant is... 

    A new application of measurement of alternatives and ranking according to compromise solution (MARCOS) in solar site location for electricity and hydrogen production: A case study in the southern climate of Iran

    , Article Energy ; Volume 261 , 2022 ; 03605442 (ISSN) Hosseini Dehshiri, S. S ; Firoozabadi, B ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    In recent years, declining fossil fuel reserves and increasing environmental concerns led to higher utilization of renewable energy source (RES). One of the RES is Solar energy which is abundantly found in different areas of the globe, particularly in Iran. The aim of this research is to select a suitable site for constructing a solar power plant to generate electricity-hydrogen in southern Iran, Kerman province. For this purpose, a new hybrid Multi criteria decision making method is used. The Stepwise Weight Assessment Ratio Analysis (SWARA)method is used to weigh the criteria and the Measurement of alternatives and ranking according to Compromise solution (MARCOS)method is used to rank... 

    A Supply Chain Model for the Evaluation of Fossil and Bio Fuels in Iran

    , M.Sc. Thesis Sharif University of Technology Haj Hassan, Atiye (Author) ; Avami, Akram (Supervisor)
    Abstract
    Clean and Renewable energies are one of the most important part of global policy. In order to reduce greenhouse gas emissions mostly from fossil fuels, many countries have introduced biofuels to avoid depletion of fossil fuels and decrease the pollution. In Iran, large dependency on crude oil and natural gas resources cause barriers for utilization of biofuels. The country has plenty of biomass resources that may guide national decision makers toward biofuels.In this study, biomass supply chain to produce biofuel is studied to reach sustainability. The model enables us to depict the optimal path to reach the economic, environmental, and social sustainability through the whole supply chain.... 

    Photocatalytic Conversion of CO2 under Visible Light Irradiation

    , M.Sc. Thesis Sharif University of Technology Jamali Gandomani, Hossein (Author) ; Khorasheh, Farhad (Supervisor) ; Hamzehlouyan,Tayebeh (Supervisor) ; Larimi, Afsanehsadat (Supervisor)
    Abstract
    The photoreduction of CO2 to produce renewable solar fuel known as artificial photosynthesis attracted a lot of attention during the last two decades due to the global warming issue caused through increasing CO2 and shortage of fossil fuels resources. In this study, in order to enhance photocatalytic process of CO2 under visible light, TiO2-graphene and TiO2-copper nanocomposite utilized. A series of Cu/TiO2 photocatalysts were prepared with various Cu (2, 5 and 8 wt%) and a series of G/TiO2 photocatalysts with different graphene (G) content (5, 20 and 40 wt.%) were prepared and tested for the reduction of CO2. XRD, BET, DRS and TEM analyses employed to characterize the catalyst while the... 

    Energy planning and policy making; The case study of Iran

    , Article Energy Sources, Part B: Economics, Planning and Policy ; Volume 11, Issue 8 , 2016 , Pages 682-689 ; 15567249 (ISSN) Jafari, H. H ; Vakili, A ; Eshraghi, H ; Hamidinezhad, A ; Naseri, I ; Sharif University of Technology
    Taylor and Francis Inc 
    Abstract
    Due to the limited resources of fossil fuels, energy supply–demand management and planning especially in the supply-side of the energy system have increasingly become very important. This article assesses Iran’s energy system in order to find the main causes of the considerably high energy intensity in the country compared with similar economies in size and production. Accordingly, fundamental policies and strategies are proposed in order to manage the recognized bottlenecks. The conclusions suggest strongly that not only the fossil-based energy system, but also incompatible patterns of production and consumption in the reference energy system as well as the use of conventional technologies... 

    Hydrogen distribution in refinery with non-linear programming

    , Article International Journal of Engineering, Transactions B: Applications ; Volume 18, Issue 2 , 2005 , Pages 165-176 ; 1728-144X (ISSN) Shahraki, F ; Kashi, E ; Rashtchian, D ; Sharif University of Technology
    Materials and Energy Research Center  2005
    Abstract
    Growth of the world population, increasing demand for fossil fuel consumption and consequently increasing threat of global warming, has extended the need for production and use of clean fuels and normal hydrogen is an important utility in the production of clean fuels. In this paper, a mathematical optimization method is applied which is based on non-linear programming of superstructure for minimizing the consumption of hydrogen. The method considers all the pressure constraints and is suited for revamping industrial systems. The optimum placement of new equipments like purification unit has been also considered. It is tried to verify the method adopted, in addition, an industrial case study... 

    Reliability improvement of power system utilizing BESS with wind farm

    , Article 2015 IEEE 15th International Conference on Environment and Electrical Engineering, EEEIC 2015 - Conference Proceedings, 10 June 2015 through 13 June 2015 ; 2015 , Pages 1120-1125 ; 9781479979936 (ISBN) Shahooei, Z ; Fotuhi-Firuzabad, M ; Abbaspour, A ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2015
    Abstract
    In this paper, the effect of wind power generation on power system reliability is investigated. Furthermore, reliability improvement of power system using integrated battery energy storage system and wind farm will be evaluated. Growing demand for electrical energy, gradual diminishing of fossil fuel resources and environmental pollution due to continuous exploitation of them, have led to inevitable change of energy sources in power generation. Due to the random nature of wind speed, the power output of a wind farm is fluctuating; as a result, it does not have a proper control capability. The growing penetration of wind power generation in power system could cause various problems in... 

    Experimental analysis of CO2, CO, SO2 and NO x emission factors of Iran's fossil fuel fired power plants

    , Article 2010 IEEE International Energy Conference and Exhibition, EnergyCon 2010, 18 December 2010 through 22 December 2010 ; 2010 , Pages 775-779 ; 9781424493807 (ISBN) Shahsavari Alavijeh, H ; Shahsavari Alavijeh, H ; Kiumarsi Oskuei, A ; Asheri, M. H ; Sharif University of Technology
    Abstract
    In this paper, the effect of different parameters of power plants, such as height above sea level, performance, ambient temperature, fuel type on emissions in Iran's power plants is investigated. Based on that, a general strategy for selecting the type of power plant, fuel that fit with the geographical situation in the Middle East is presented. Results taken from this scientific study shows that using natural gas to generate power in the region should be a priority. As well as expected, the value of various emission factors decrease by increasing power produce. Also the emission factors of combined cycle power plants are the lowest as compared to other types of power plants  

    Microstructure, morphology and electrochemical properties of Co nanoflake water oxidation electrocatalyst at micro- and nanoscale

    , Article RSC Advances ; Volume 7, Issue 21 , 2017 , Pages 12923-12930 ; 20462069 (ISSN) Naseri, N ; Solaymani, S ; Ghaderi, A ; Bramowicz, M ; Kulesza, S ; Ţălu, Ş ; Pourreza, M ; Ghasemi, S ; Sharif University of Technology
    Royal Society of Chemistry  2017
    Abstract
    Nowadays, fossil fuel limitations and environmental concerns push researchers to find clean and renewable energy resources. Solar hydrogen production via water splitting reactions in electrochemical and/or photo-electrochemical systems has been accepted as a promising route and efficient electrocatalysts are involved in both. Here, cobalt nanoflakes with an oxide/hydroxide surface and a conductive metallic core are grown on commercially available steel mesh modified with carbon based nanocomposites as a support layer. The portion of reduced graphene oxide sheets was changed from 0 to 100 wt% and the correlation of this concentration with the surface morphology and electro-catalytic activity... 

    Quantification of technological progress in greenhouse gas (GHG) capture and mitigation using patent data

    , Article Energy and Environmental Science ; Volume 12, Issue 9 , 2019 , Pages 2789-2805 ; 17545692 (ISSN) Sharifzadeh, M ; Triulzi, G ; Magee, C. L ; Sharif University of Technology
    Royal Society of Chemistry  2019
    Abstract
    Greenhouse gas emissions from anthropogenic sources are believed to be the main cause of global warming and climate change. Furthermore, fossil fuels are forecasted to remain the dominant source of energy in the near future. Therefore, capture and sequestration of greenhouse gases and in particular carbon dioxide is likely to be a major pathway toward environmental protection and energy sustainability. Such clarity has stimulated an intense and diverse range of research into various capture and mitigation technologies, which race with global warming in real-time. Quantification of the performance improvement rates of these technologies can inform decision-makers' long-term investment... 

    Policy framework of non-fossil power plants in Iran’s electricity sector by 2030

    , Article International Journal of Sustainable Energy Planning and Management ; Volume 29 , 2020 , Pages 91-108 Abbasi Godarzi, A ; Maleki, A ; Sharif University of Technology
    Aalborg University press  2020
    Abstract
    The Iranian government has set a target of a 20% share of non-fossil fuel electricity generation by 2030, whose main result is reducing Green House Gas (GHG) emissions (about 182 million tonnes in 2017) to achieve the targets pledged under the Paris Climate Accord. So, this paper presents a comprehensive model on the expansion of non-fossil technology to evaluate the impact of increasing their share in Iran’s electricity supply system. This analytical approach is based on system dynamics (SD) that was developed based on dynamic behavior of electricity market, with an emphasis on the expansion of non-fossil fuels (solar photovoltaics, wind turbines, expansion turbines, and hydro power) in the... 

    Prioritization of potential locations for harnessing wind energy to produce hydrogen in Afghanistan

    , Article International Journal of Hydrogen Energy ; Volume 45, Issue 58 , November , 2020 , Pages 33169-33184 Mostafaeipour, A ; Hosseini Dehshiri, S. J ; Hosseini Dehshiri, S. S ; Jahangiri, M ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Due to the devastating ecological effects and constrained reserves of fossil fuels, renewable energies are now globally accepted as viable alternative sources of energy. Among renewable energy sources, wind energy has become globally popular, primarily because wind farms can be rapidly built and easily maintained at a relatively low cost. Wind-powered hydrogen production is an effective solution for storing the excess energy output of wind farms. The hydrogen produced in this way can be used not only in fuel cells but also in cooling, oil, gas, and petrochemical fields. As a country devastated by war and instability, Afghanistan has major energy generation challenges and a substantially... 

    Use of biomass-derived glycerol as an alternative to fossil fuels for aniline production: Energy saving and environmental aspects

    , Article Fuel ; Volume 310 , 2022 ; 00162361 (ISSN) Khademi, M. H ; Lotfi-Varnoosfaderani, M ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Catalytic reduction of nitrobenzene is the leading technological step in aniline production. The hydrogen required for this stage, is dominantly produced from fossil fuels through reforming processes, which take much energy and emit large amounts of CO2. Biomass-derived glycerol steam reforming is an attractive alternative to traditional reforming to reduce the dependence on hydrocarbon resources and mitigate climate change. This research aims to analyze a mass- and heat-integrated multi-tubular membrane reactor, containing nitrobenzene hydrogenation (exothermic-side) and glycerol steam reforming (endothermic-side) for co-production of aniline and syngas. In this process, hydrogenation... 

    Source apportionment of fine particulate matter in a Middle Eastern Metropolis, Tehran-Iran, using PMF with organic and inorganic markers

    , Article Science of the Total Environment ; Volume 705 , 2020 Esmaeilirad, S ; Lai, A ; Abbaszade, G ; Schnelle Kreis, J ; Zimmermann, R ; Uzu, G ; Daellenbach, K ; Canonaco, F ; Hassankhany, H ; Arhami, M ; Baltensperger, U ; Prévôt, A. S. H ; Schauer, J. J ; Jaffrezo, J. L ; Hosseini, V ; El Haddad, I ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    With over 8 million inhabitants and 4 million motor vehicles on the streets, Tehran is one of the most crowded and polluted cities in the Middle East. Frequent exceedances of national daily PM2.5 limit have been reported in this city during the last decade, yet, the chemical composition and sources of fine particles are poorly determined. In the present study, 24-hour PM2.5 samples were collected at two urban sites during two separate campaigns, a one-year period from 2014 to 2015 and another three-month period at the beginning of 2017. Concentrations of organic carbon (OC), elemental carbon (EC), inorganic ions, trace metals and specific organic molecular markers were measured by chemical...