Loading...
Search for: fossil-fuel-power-plants
0.008 seconds

    Energy supply transformation pathways in Iran to reduce GHG emissions in line with the Paris Agreement

    , Article Energy Strategy Reviews ; Volume 32 , 2020 Ghadaksaz, H ; Saboohi, Y ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Extensive dependence of the national economy on wasteful fossil fuel use as well as limited access to the international financial markets and the best available techniques over the strict economic sanctions period have hindered Iran from developing a sustainable energy system. By considering the reversal order, the present study investigated the least-cost options for improving energy efficiency and reducing GHG emissions in the energy supply sector. The essential purpose of this research work is to increase the evidence base necessary to inform policy and strategy discussions within Iran and related communities concerning the choice of GHG emissions reduction. Applying ARDL approach to... 

    Impact of solar energy on the integrated operation of electricity-gas grids

    , Article Energy ; Volume 183 , 2019 , Pages 844-853 ; 03605442 (ISSN) Badakhshan, S ; Hajibandeh, N ; Shafie khah, M ; Catalão, J. P. S ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    Photovoltaic energy is one of the clean and efficient energies which has been developing quickly in the last years. As the penetration of solar plants is increasing in the electricity network, new problems have arisen in network operation. This paper models a high penetration factor of solar energy in the electricity network and investigates the impact of solar energy growth on both the generation schedule of different power plants and in the natural gas transmission network. Fuel management of gas power plants is modeled through simulation of the natural gas transmission network. To this end, an increase in the penetration of solar energy in the electricity network inevitably leads to a... 

    Security-constrained unit commitment with natural gas pipeline transient constraints

    , Article IEEE Transactions on Smart Grid ; Volume 11, Issue 1 , 2020 , Pages 118-128 Badakhshan, S ; Ehsan, M ; Shahidehpour, M ; Hajibandeh, N ; Shafie Khah, M ; Catalao, J. P. S ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2020
    Abstract
    The interdependencies of power systems and natural gas networks have increased due to the additional installations of more environmental-friendly and fast-ramping natural gas power plants. The natural gas transmission network constraints and the use of natural gas for other types of loads can affect the delivery of natural gas to generation units. These interdependencies will affect the power system security and economics in day-ahead and real-time operations. Hence, it is imperative to analyze the impact of natural gas network constraints on the security-constrained unit commitment (SCUC) problem. In particular, it is important to include natural gas and electricity network transients in... 

    Policy framework of non-fossil power plants in Iran’s electricity sector by 2030

    , Article International Journal of Sustainable Energy Planning and Management ; Volume 29 , 2020 , Pages 91-108 Abbasi Godarzi, A ; Maleki, A ; Sharif University of Technology
    Aalborg University press  2020
    Abstract
    The Iranian government has set a target of a 20% share of non-fossil fuel electricity generation by 2030, whose main result is reducing Green House Gas (GHG) emissions (about 182 million tonnes in 2017) to achieve the targets pledged under the Paris Climate Accord. So, this paper presents a comprehensive model on the expansion of non-fossil technology to evaluate the impact of increasing their share in Iran’s electricity supply system. This analytical approach is based on system dynamics (SD) that was developed based on dynamic behavior of electricity market, with an emphasis on the expansion of non-fossil fuels (solar photovoltaics, wind turbines, expansion turbines, and hydro power) in the... 

    Prioritization of potential locations for harnessing wind energy to produce hydrogen in Afghanistan

    , Article International Journal of Hydrogen Energy ; Volume 45, Issue 58 , November , 2020 , Pages 33169-33184 Mostafaeipour, A ; Hosseini Dehshiri, S. J ; Hosseini Dehshiri, S. S ; Jahangiri, M ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Due to the devastating ecological effects and constrained reserves of fossil fuels, renewable energies are now globally accepted as viable alternative sources of energy. Among renewable energy sources, wind energy has become globally popular, primarily because wind farms can be rapidly built and easily maintained at a relatively low cost. Wind-powered hydrogen production is an effective solution for storing the excess energy output of wind farms. The hydrogen produced in this way can be used not only in fuel cells but also in cooling, oil, gas, and petrochemical fields. As a country devastated by war and instability, Afghanistan has major energy generation challenges and a substantially... 

    Co-combustion studies of low-rank coal and refuse-derived fuel: performance and reaction kinetics

    , Article Energies ; Volume 14, Issue 13 , 2021 ; 19961073 (ISSN) Azam, M ; Ashraf, A ; Setoodeh Jahromy, S ; Miran, S ; Raza, N ; Wesenauer, F ; Jordan, C ; Harasek, M ; Winter, F ; Sharif University of Technology
    MDPI AG  2021
    Abstract
    In connection to present energy demand and waste management crisis in Pakistan, refuse-derived fuel (RDF) is gaining importance as a potential co-fuel for existing coal fired power plants. This research focuses on the co-combustion of low-quality local coal with RDF as a mean to reduce environmental issues in terms of waste management strategy. The combustion characteristics and kinetics of coal, RDF, and their blends were experimentally investigated in a micro-thermal gravi-metric analyzer at four heating rates of 10, 20, 30, and 40 °C/min to ramp the temperature from 25 to 1000 °C. The mass percentages of RDF in the coal blends were 10%, 20%, 30%, and 40%, respec-tively. The results show... 

    Development of a zero emission integrated system for co-production of electricity and methanol through renewable hydrogen and CO 2 capture

    , Article International Journal of Greenhouse Gas Control ; Volume 7 , 2012 , Pages 145-152 ; 17505836 (ISSN) Soltanieh, M ; Azar, K. M ; Saber, M ; Sharif University of Technology
    Abstract
    In order to decrease CO 2 emission into the atmosphere and develop renewable energy sources for carbon capture, an integrated system is considered for co-production of electricity and methanol. In this research, methanol synthesis unit through captured CO 2 from fossil fuel power plant and produced H 2 from water electrolysis unit by wind renewable energy is developed. An oxy-fuel combustion carbon capture method is considered in large scale Matiant power plant based on utilization of oxygen from water electrolysis unit. Technical and economical analysis of the proposed system shows that when the price of natural gas is 7.8US$/GJ, the total CO 2 avoided cost is 93US$/(tonne of CO 2) and... 

    Development of a framework for the sustainability evaluation of renewable and fossil fuel power plants using integrated LCA-emergy analysis: A case study in Iran

    , Article Renewable Energy ; Volume 179 , 2021 , Pages 1548-1564 ; 09601481 (ISSN) Alizadeh, S ; Avami, A ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    This study presents a comprehensive framework for evaluating renewable and non-renewable power plants' performance using the Life Cycle Analysis (LCA) and emergy analysis. The emergy analysis is used to consider the free ecosystem services in the sustainability of the systems as a supplement to the LCA. The results indicate that the wind and photovoltaic power plants have the best performance in terms of the LCA analysis, while the wind and combined cycle power plants have the highest emergy sustainability index. The best scenario is chosen under a two-objective optimization problem, including the single score and emergy sustainability as objective functions. Here, the wind power plant is... 

    Development of a framework for the sustainability evaluation of renewable and fossil fuel power plants using integrated LCA-emergy analysis: a case study in Iran

    , Article Renewable Energy ; Volume 179 , 2021 , Pages 1548-1564 ; 09601481 (ISSN) Alizadeh, S ; Avami, A ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    This study presents a comprehensive framework for evaluating renewable and non-renewable power plants' performance using the Life Cycle Analysis (LCA) and emergy analysis. The emergy analysis is used to consider the free ecosystem services in the sustainability of the systems as a supplement to the LCA. The results indicate that the wind and photovoltaic power plants have the best performance in terms of the LCA analysis, while the wind and combined cycle power plants have the highest emergy sustainability index. The best scenario is chosen under a two-objective optimization problem, including the single score and emergy sustainability as objective functions. Here, the wind power plant is... 

    A new application of measurement of alternatives and ranking according to compromise solution (MARCOS) in solar site location for electricity and hydrogen production: A case study in the southern climate of Iran

    , Article Energy ; Volume 261 , 2022 ; 03605442 (ISSN) Hosseini Dehshiri, S. S ; Firoozabadi, B ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    In recent years, declining fossil fuel reserves and increasing environmental concerns led to higher utilization of renewable energy source (RES). One of the RES is Solar energy which is abundantly found in different areas of the globe, particularly in Iran. The aim of this research is to select a suitable site for constructing a solar power plant to generate electricity-hydrogen in southern Iran, Kerman province. For this purpose, a new hybrid Multi criteria decision making method is used. The Stepwise Weight Assessment Ratio Analysis (SWARA)method is used to weigh the criteria and the Measurement of alternatives and ranking according to Compromise solution (MARCOS)method is used to rank... 

    Economic feasibility of CO2 capture from oxy-fuel power plants considering enhanced oil recovery revenues

    , Article Energy Procedia, 19 September 2010 through 23 September 2010 ; Volume 4 , September , 2011 , Pages 1886-1892 ; 18766102 (ISSN) Khorshidi, Z ; Soltanieh, M ; Saboohia, Y ; Arab, M ; Sharif University of Technology
    2011
    Abstract
    Considering the dramatic increase of greenhouse gases concentration in the atmosphere, especially carbon dioxide, reduction of these gases seems necessary to combat global warming. Fossil fuel power plants are one of the main sources of CO2 emission and several methods are under development to capture CO2 from power plants. In this paper, CO2 capture from a natural gas fired steam cycle power plant using oxyfuel combustion technology is studied. Oxy-fuel combustion is an interesting option since CO2 concentration in the flue gas is highly increased. The Integrated Environmental Control Model (IECM) developed by Carnegie Mellon University (USA) is used to evaluate the effect of this capture...