Loading...
Search for: fourier-transform-infrared-spectrometry
0.011 seconds

    Physicochemical and biological properties of electrodeposited graphene oxide/chitosan films with drug-eluting capacity

    , Article Carbon ; Volume 84, Issue C , April , 2015 , Pages 91-102 ; 00086223 (ISSN) Ordikhani, F ; Ramezani Farani, M ; Dehghani, M ; Tamjid, E ; Simchi, A ; Sharif University of Technology
    Elsevier Ltd  2015
    Abstract
    In this study, novel graphene oxide/chitosan nanocomposite coatings with long term drugeluting potential are presented. The coatings are fabricated by the facile and reproducible electrophoretic deposition technique. Analysis of the prepared films shows that the graphene oxide nanosheets are exfoliated in the chitosan matrix. Fourier-transform infrared spectrometry reveals polymer attachment to the carboxylic bonds of graphene oxide, providing a strong interaction and exfoliation of the nanolayers. In vitro viability assay by human osteosarcoma cells (MG-63) demonstrates that the nanocomposite films are highly biocompatible up to 30 wt% graphene oxide, but at higher concentrations a slight... 

    Investigation of Tabas anthracite coal devolatilization: Kinetics, char structure and major evolved species

    , Article Thermochimica Acta ; Volume 654 , 2017 , Pages 74-80 ; 00406031 (ISSN) Toloue Farrokh, N ; Askari, M ; Fabritius, T ; Sharif University of Technology
    Elsevier B.V  2017
    Abstract
    The pyrolysis of low-volatile Tabas anthracite coal was investigated by thermogravimetric technique (TGA) in the temperature range from ambient to 1100 °C under non-isothermal heating conditions (1.5, 3, and 7 °C/min heating rates). Higher heating rates showed a small retarding effect on devolatilization toward higher temperatures. Iso-conversional method was used for the kinetic study of non-isothermal Thermogravimetric data. Activation energy calculated for coal conversion of 20–80% was about 319 kJ/mol which may be a result of stable ordered structure of this type of coal. Analysis of evolved gases by Fourier transform infrared spectrometry (FTIR) in 7 °C/min heating rate was conducted... 

    A polythiophene–silver nanocomposite for headspace needle trap extraction

    , Article Journal of Chromatography A ; Volume 1460 , 2016 , Pages 1-8 ; 00219673 (ISSN) Bagheri, H ; Banihashemi, S ; Jelvani, S ; Sharif University of Technology
    Elsevier B. V 
    Abstract
    A nanocomposite consisting of polythiophene–silver was prepared and implemented as a desired sorbent for headspace needle trap extraction. Colloidal silver nanoparticles (Ag NPs) with narrow size distribution and high stability were synthesized in water–in–oil microemulsion. This simple procedure was adapted to prepare highly monodispersed Ag NPs, starting from an initial synthesis in sodium bis(2-ethylhexyl) sulfosuccinate (AOT) reverse micelles. Polythiophene (PT) was synthesized by chemical oxidative polymerization in the presence of anhydrous ferric chloride while its polymeric structure was confirmed by Fourier transform infrared spectrometry (FTIR). Eventually, the prepared PT was... 

    Surfactant-assisted synthesis and characterization of hydroxyapatite nanorods under hydrothermal conditions

    , Article Materials Science- Poland ; Volume 27, Issue 4 , 2009 , Pages 961-971 ; 01371339 (ISSN) Salarian, M ; Solati Hashjin, M ; Sara Shafiei, S ; Goudarzi, A ; Salarian, R ; Nemati, A ; Sharif University of Technology
    2009
    Abstract
    Hydroxyapatite (HAp) nanorods with uniform morphology and controllable size were successfully synthesized by precipitating Ca(NO3) 24H2O and (NH4)2HPO4 in the presence of cetyltrimethylammonium bromide (CTAB) and polyethylene glycol 400 (PEG 400) as cationic surfactant and non-ionic cosurfactant, respectively, under hydrothermal conditions. The effect of hydrothermal temperature on the composition, morphology and size of HAp particles was studied using X-ray diffraction (XRD), Fourier transform infrared spectrometry (FTIR) and scanning electron microscopy (SEM). Results revealed that the morphology and size of HAp particles can be effectively controlled by the presence of CTAB and PEG... 

    Antibiotic-loaded chitosan–Laponite films for local drug delivery by titanium implants: cell proliferation and drug release studies

    , Article Journal of Materials Science: Materials in Medicine ; Volume 26, Issue 12 , December , 2015 ; 09574530 (ISSN) Ordikhani, F ; Dehghani, M ; Simchi, A ; Sharif University of Technology
    Kluwer Academic Publishers  2015
    Abstract
    Abstract: In this study, chitosan–Laponite nanocomposite coatings with bone regenerative potential and controlled drug-release capacity are prepared by electrophoretic deposition technique. The controlled release of a glycopeptide drug, i.e. vancomycin, is attained by the intercalation of the polymer and drug macromolecules into silicate galleries. Fourier-transform infrared spectrometry reveals electrostatic interactions between the charged structure of clay and the amine and hydroxyl groups of chitosan and vancomycin, leading to a complex positively-charged system with high electrophoretic mobility. By applying electric field the charged particles are deposited on the surface of titanium... 

    A core–shell titanium dioxide polyaniline nanocomposite for the needle-trap extraction of volatile organic compounds in urine samples

    , Article Journal of Separation Science ; Volume 40, Issue 9 , 2017 , Pages 1985-1992 ; 16159306 (ISSN) Banihashemi, S ; Bagheri, H ; Sharif University of Technology
    Wiley-VCH Verlag  2017
    Abstract
    We synthesized a titanium dioxide–polyaniline core–shell nanocomposite and implemented it as an efficient sorbent for the needle-trap extraction of some volatile organic compounds from urine samples. Polyaniline was synthesized, in the form of the emeraldine base, dissolved in dimethyl acetamide followed by diluting with water at pH 2.8, using the interfacial polymerization method. The TiO2 nanoparticles were encapsulated inside the conducting polymer shell, by adapting the in situ dispersing approach. The surface characteristics of the nanocomposite were investigated by Fourier transform infrared spectrometry, scanning electron microscopy, and transmission electron microscopy. After...