Loading...
Search for: fracture-apertures
0.005 seconds

    Pore-Level Observation of Free Gravity Drainage of Oil in Fractured Porous Media

    , Article Transport in Porous Media ; Volume 87, Issue 2 , 2011 , Pages 561-584 ; 01693913 (ISSN) Mashayekhizadeh, V ; Ghazanfari, M. H ; Kharrat, R ; Dejam, M ; Sharif University of Technology
    2011
    Abstract
    This work presents results from two sets of experiments conducted to study, in pore level, the role of fracture aperture and tilt angle on the stability of liquid bridges and the shape of a front during free gravity drainage process. Glass micromodels of two different aperture sizes were used to monitor the mechanism of gravity drainage of air-crude oil system, rotating around a bottom corner to create different tilting angles. Oil content within the matrix blocks was determined as a function of time using a series of images obtained during the experiments, from which net drainage rate from the upper and lower matrix blocks is calculated. Liquid bridges are more frequent but less stable at... 

    Fully coupled analysis of interaction between the borehole and pre-existing fractures

    , Article International Journal of Rock Mechanics and Mining Sciences ; Volume 89 , 2016 , Pages 151-164 ; 13651609 (ISSN) Gomar, M ; Goodarznia, I ; Shadizadeh, S. R ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    The coupling of rock and thermal stresses along with fluid pressure are particularly important in fractured rock masses, since stress-induced changes in permeability can be large and irreversible under perturbations resulting from various natural and induced activities. A new method is presented to model fracture permeability changes during drilling in fractured rocks. The approach includes finite element method (FEM) for fully coupled thermo-poroelastic analysis of stress distribution around borehole and displacement discontinuity method (DDM) to model fracture deformation. Three cases of overbalanced, underbalanced, and balanced drilling fluid pressure conditions are employed. The... 

    Coupled thermo-poroelastic analysis of drilling induced mechanical damage in fractured rocks

    , Article Journal of Petroleum Science and Engineering ; Volume 146 , 2016 , Pages 601-616 ; 09204105 (ISSN) Gomar, M ; Goodarznia, I ; Shadizadeh, S. R ; Sharif University of Technology
    Elsevier  2016
    Abstract
    The wellbore represents one of the most crucial components in the hydrocarbon and geothermal reservoir system, as it is the sole conduit to the reservoir for fluid production or injection. Therefore, predicting and controlling of the permeability variations close to the wellbore has been one of the most challenging issues in geothermal and petroleum reservoir systems. A new method is presented to model fracture permeability changes during drilling in fractured rocks. The approach includes finite element method (FEM) for fully coupled thermo-poroelastic analysis of stress distribution around borehole and displacement discontinuity method (DDM) to model fracture deformation. Four models of... 

    Evolution of pore-scale morphology of oil shale during pyrolysis: a quantitative analysis

    , Article Transport in Porous Media ; Volume 119, Issue 1 , 2017 , Pages 143-162 ; 01693913 (ISSN) Rabbani, A ; Baychev, T. G ; Ayatollahi, S ; Jivkov, A. P ; Sharif University of Technology
    Abstract
    Changes of morphological parameters of oil shale under thermal conditions are investigated. Analyses are based on 26 micro-computed tomography (micro-CT) images of Green River immature shale rock available under creative commons license. Several image processing and characterization algorithms are applied to sequential high-resolution micro-CT images of oil shale samples undergoing pyrolysis. Pore-scale morphology is extracted and quantified, providing results for pore size, throat size, grain size, specific surface, coordination number, and fracture aperture. The results demonstrate critical increases of porosity, coordination number and fracture aperture in the temperature range from 390... 

    Numerical modeling of water oil two-phase flow during counter-current spontaneous imbibition in porous media at pore-scale

    , Article Petroleum Science and Technology ; Volume 38, Issue 24 , October , 2020 , Pages 1040-1053 Jafari, I ; Rokhforouz, M. R ; Sharif University of Technology
    Bellwether Publishing, Ltd  2020
    Abstract
    In this work, phase-field method is used to develop a numerical model to simulate two-phase flow through a heterogeneous fractured porous medium. Various sensitivity analyses were performed to assess the impact of wettability, fracture aperture, interfacial tension, and water injection velocity on the displacement process. It was observed that the water mass imbibed into the matrix block varies linearly with time before the water front meets the outlet, known as “filling fracture” regime, which is captured for the first time in a numerical study. It is revealed that increasing the fracture aperture reduces water breakthrough time and oil recovery. © 2020 Taylor & Francis Group, LLC  

    An insight into the formation of liquid bridge and its role on fracture capillary pressure during gravity drainage in fractured porous media

    , Article Canadian Journal of Chemical Engineering ; Volume 99, Issue S1 , 2021 , Pages S212-S231 ; 00084034 (ISSN) Harimi, B ; Masihi, M ; Ghazanfari, M. H ; Sharif University of Technology
    John Wiley and Sons Inc  2021
    Abstract
    The formation of liquid bridges can maintain capillary continuity between matrix blocks during gas/oil gravity drainage in fractured reservoirs. A travelling oil drop draining into a fracture either forms a liquid bridge or breaks into detached drops. However, the different characteristics of a travelling drop during its elongation and required conditions for transformation into a liquid bridge are not well described in the published literature. In this work, a one-dimensional model based on slender-drop theory is employed that holds gravity, viscosity, and surface tension forces but ignores inertia. This model, together with Young-Laplace equation, gives the fracture capillary pressure.... 

    Theoretical modeling of reinfiltration process in naturally fractured reservoirs: A comparative study on traveling liquid bridges and continuum film flow approaches

    , Article Society of Petroleum Engineers - SPE/EAGE Reservoir Characterization and Simulation Conference 2009 - Overcoming Modeling Challenges to Optimize Recovery, 19 October 2009 through 21 October 2009, Abu Dhabi ; Volume 1 , 2009 , Pages 247-269 ; 9781615677443 (ISBN) Dejam, M ; Ghazanfari, M. H ; Masihi, M ; Sharif University of Technology
    Abstract
    Most of the Iranian oil reservoirs are naturally fractured. Reinfiltration is a key proceess which controls oil flow from the upper to the lower matrix block. However, theoretical modeling of fracture aperture as well as fracture dip angle effects on flow rate of drained oil during reinfilteration process remains a topic of debate in the literature. Moreover, there is no reported experience in the literature that compared the oil velocity predicted by traveling oil bridges and continuum film flow approaches. In this work reinfiltration process is modeled through two different approaches: discrete traveling liquid elements and continuum film flow along inclined fractures. For a case study... 

    Characterization of liquid bridge formed during gas-oil gravity drainage in fractured porous media

    , Article 16th European Conference on the Mathematics of Oil Recovery, ECMOR 2018, 3 September 2018 through 6 September 2018 ; 2018 ; 9789462822603 (ISBN) Harimi, B ; Masihi, M ; Ghazanfari, M. H ; Shoushtari, A ; Sharif University of Technology
    European Association of Geoscientists and Engineers, EAGE  2018
    Abstract
    Gas-oil gravity drainage that takes place in the gas-invaded zone of fractured reservoirs is the main production mechanism of gas-cap drive fractured reservoirs as well as fractured reservoirs subjected to gas injection. Interaction of neighboring matrix blocks through reinfiltration and capillary continuity effects controls the efficiency of gravity drainage. Existence of capillary continuity between adjacent matrix block is likely to increase the ultimate recovery significantly. Liquid bridge formed in fractures has a significant role in maintaining the capillary continuity between two neighboring matrix blocks. The degree of capillary continuity is proportional to capillary pressure in... 

    Modeling of capillary pressure in horizontal rough-walled fractures in the presence of liquid bridges

    , Article Journal of Petroleum Science and Engineering ; Volume 185 , 2020 Harimi, B ; Ghazanfari, M. H ; Masihi, M ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    Capillary continuity between adjacent matrix blocks through formation of liquid bridge controls the recovery factor of gravity drainage process in fractured reservoirs. However, stability of liquid bridges as well as related capillary pressure in horizontal rough fractures is not well discussed in the available literature. In this work, new models of rough-walled fracture are developed and the role of roughness size and frequency on formation of liquid bridge and fracture capillary pressure are investigated. The Young-Laplace equation is numerically solved to characterize the liquid bridge formed in the proposed models of rough fractures. Critical fracture aperture for a range of liquid... 

    Modeling fluid flow in fractured porous media with the interfacial conditions between porous medium and fracture

    , Article Transport in Porous Media ; Volume 139, Issue 1 , 2021 , Pages 109-129 ; 01693913 (ISSN) Hosseini, N ; Khoei, A. R ; Sharif University of Technology
    Springer Science and Business Media B.V  2021
    Abstract
    One of the most popular models that has been applied to predict the fluid velocity inside the fracture with impermeable walls is the cubic law. It highlights that the mean flux along the fracture is proportional to the cubic of fracture aperture. However, for a fractured porous medium, the normal and tangential interface conditions between the fracture and porous matrix can change the velocity profile inside the fracture. In this paper, a correction factor is introduced for flow equation along the fracture by imposing the continuity of normal and tangential components of velocity at the interface between the fracture and porous matrix. As a result, the mean velocity inside the fracture... 

    A sequential implicit discrete fracture model for three-dimensional coupled flow-geomechanics problems in naturally fractured porous media

    , Article Journal of Petroleum Science and Engineering ; Volume 150 , 2017 , Pages 312-322 ; 09204105 (ISSN) Moradi, M ; Shamloo, A ; Dezfuli, A. D ; Sharif University of Technology
    Abstract
    A sequential implicit numerical method based on discrete-fracture model and the Galerkin Finite Element method, for time-dependent coupled fluid flow and geomechanics problems in fractured subsurface formations is presented. Discrete-fracture model has been used to explicitly represent the fracture network inside porous media. The Galerkin Finite Element method with adaptive unstructured gridding is implemented to numerically solve the spatially three-dimensional and time-dependent problem. The presented method is validated with previously obtained solutions. Two problems are numerically solved by applying the presented methodology in a three-dimensional fractured petroleum reservoir under... 

    Uncertainty analysis for seawater intrusion in fractured coastal aquifers: Effects of fracture location, aperture, density and hydrodynamic parameters

    , Article Journal of Hydrology ; Volume 571 , 2019 , Pages 159-177 ; 00221694 (ISSN) Koohbor, B ; Fahs, M ; Ataie Ashtiani, B ; Belfort, B ; Simmons, C. T ; Younes, A ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    In this study we use polynomial chaos expansion (PCE) to perform uncertainty analysis for seawater intrusion (SWI) in fractured coastal aquifers (FCAs) which is simulated using the coupled discrete fracture network (DFN) and variable-density flow (VDF) models. The DFN-VDF model requires detailed discontinuous analysis of the fractures. In real field applications, these characteristics are usually uncertain which may have a major effect on the predictive capability of the model. Thus, we perform global sensitivity analysis (GSA) to provide a preliminary assessment on how these uncertainties can affect the model outputs. As our conceptual model, we consider fractured configurations of the... 

    Characterization of fracture dynamic parameters to simulate naturally fractured reservoirs

    , Article International Petroleum Technology Conference, IPTC 2008, Kuala Lumpur, 3 December 2008 through 5 December 2008 ; Volume 1 , 2008 , Pages 473-485 ; 9781605609546 (ISBN) Bahrami, H ; Siavoshi, J ; Parvizi, H ; Esmaili, S ; Karimi, M. H ; Nasiri, A ; Sharif University of Technology
    2008
    Abstract
    Fractures identification is essential during exploration, drilling and well completion of naturally fractured reservoirs since they have a significant impact on flow contribution. There are different methods to characterize these systems based on formation properties and fluid flow behaviour such as logging and testing. Pressure-transient testing has long been recognized as a reservoir characterization tool. Although welltest analysis is a recommended technique for fracture evaluation, but its use is still not well understood. Analysis of pressure transient data provides dynamic reservoir properties such as average permeability, fracture storativity and fracture conductivity.An infusion of...