Loading...
Search for: fracture-behavior
0.011 seconds
Total 23 records

    The effect of aging on the fracture characteristics and ductility of self-compacting concrete

    , Article Materials and Design ; Volume 55 , March 2014 , Pages 937-948 Beygi, M. H. A ; Kazemi, M. T ; Nikbin, I. M ; Vaseghi Amiri, J ; Sharif University of Technology
    Abstract
    Good knowledge of fracture parameters and cracking behavior of self-compacting concrete (SCC) from early ages until the SCC becomes mature plays an important role in design of SCC structure and also in evaluation of durability and consequently prevention of damage. In this paper, variation of fracture parameters and corresponding ductility behavior of SCC at different ages (e.g. 3days, 7days, 28days and 90days) for SCC mixes with w/c ratios of 0.45 and 0.65 have been experimentally studied. To do so, three-point bending tests were carried out on 120 notched beams. Then, size effect method (SEM) and work of fracture method (WFM) were applied to interpret the results. The results of analyses... 

    Study the effect of architectural modification on fracture behavior of Al-DRA composite

    , Article Mechanics of Advanced Materials and Structures ; Vol. 21, issue. 8 , 2014 , Pages 662-668 ; ISSN: 15376494 Jamali, M ; Khalili, S ; Bagheri, R ; Simchi, A ; Sharif University of Technology
    Abstract
    An architectural modification method was utilized to improve fracture toughness of discontinuously reinforced aluminum (DRA) composites. Al-DRA composites having a structure similar to that of reinforced concrete were fabricated. The number of reinforcing DRA rods within Al matrix and volume fraction of SiC particles in DRA were altered to evaluate their effect on fracture behavior of these materials. It was found that architectural modification does not have any destructive influence on elastic modulus and yield strength of the composite. Moreover, the success of this method on toughness improvement strongly depends on the occurrence of debonding between Al and DRA regions upon loading  

    Impact of phase transformation on mechanical properties anisotropy of commercially pure titanium

    , Article Materials and Design ; Volume 37 , 2012 , Pages 223-227 ; 02641275 (ISSN) Nasiri Abarbekoh, H ; Ekrami, A ; Ziaei Moayyed, A. A ; Sharif University of Technology
    Abstract
    Effects of microstructure and texture, before and after phase transformation, on the anisotropy of the mechanical properties and fracture behaviors of commercially pure titanium were studied. Before phase transformation, due to the split distribution of basal texture the activation of different deformation systems led to mechanical properties anisotropy. Although the fracture mechanism in both specimens was voids nucleation, growth and coalescence, the shape, size and distribution of dimples were affected by active deformation systems. However, after phase transformation, basal plains in most grains were aligned with the transverse direction. This texture component led to the activation and... 

    Effect of hybridization on crystallization behavior, mechanical properties, and toughening mechanisms in rubber-modified polypropylene flax fiber composites

    , Article Journal of Composite Materials ; Volume 56, Issue 17 , 2022 , Pages 2677-2693 ; 00219983 (ISSN) Bahrami, R ; Bagheri, R ; Sharif University of Technology
    SAGE Publications Ltd  2022
    Abstract
    Nowadays, the significance of sustainability has urged composite manufacturers to replace traditional synthetic fibers with eco-friendly natural alternatives due to their environmental and economic benefits. This work aims to fabricate hybrid polypropylene (PP) composites with short flax fibers, octene-ethylene copolymer (POE) rubber particles, and maleic anhydride-grafted polypropylene (MAPP) compatibilizer. The main goal is to gain an insight into the combined effect of toughening mechanisms induced by the short fibers and rubber particles at the crack tip and wake of composites, which is a crucial step in reaching a balance between toughness and rigidity. In this regard, a novel... 

    Evaluation of the effect of maximum aggregate size on fracture behavior of self compacting concrete

    , Article Construction and Building Materials ; Vol. 55 , 2014 , pp. 202-211 ; ISSN: 09500618 Beygi, M. H. A ; Kazemi, M. T ; Vaseghi Amiri, J ; Nikbin, I. M ; Rabbanifar, S ; Rahmani, E ; Sharif University of Technology
    Abstract
    This paper presents and discusses the effect of maximum size of coarse aggregate on fracture characteristics and brittleness of self-compacting concrete (SCC). Based on an experimental program, a series of three point bending tests were carried out on 86 notched beams, as recommended by RILEM. For all mixes, the parameters were analyzed by the work-of-fracture method (WFM) and by the size effect method (SEM) and consequently a correlation between these methods was obtained which is used to calibrate cracking numerical models. Test results showed that with increase of size of coarse aggregate, (a): fracture energies of GF in WFM and Gf in SEM increase which may be explained by the change in... 

    Microstructural evolution and fracture behavior of friction-stir-welded Al-Cu laminated composites

    , Article Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science ; Vol. 45, issue. 1 , 2014 , pp. 361-370 Beygi, R ; Kazeminezhad, M ; Kokabi, A. H ; Sharif University of Technology
    Abstract
    In this study, we attempt to characterize the microstructural evolution during friction stir butt welding of Al-Cu-laminated composites and its effect on the fracture behavior of the joint. Emphasis is on the material flow and particle distribution in the stir zone. For this purpose, optical microscopy and scanning electron microscopy (SEM) images, energy-dispersive spectroscopy EDS and XRD analyses, hardness measurements, and tensile tests are carried out on the joints. It is shown that intermetallic compounds exist in lamellas of banding structure formed in the advancing side of the welds. In samples welded from the Cu side, the banding structure in the advancing side and the hook... 

    The effect of water to cement ratio on fracture parameters and brittleness of self-compacting concrete

    , Article Materials and Design ; Volume 50 , 2013 , Pages 267-276 ; 02613069 (ISSN) Beygi, M. H. A ; Kazemi, M. T ; Nikbin, I. M ; Amiri, J. V ; Sharif University of Technology
    Elsevier Ltd  2013
    Abstract
    The paper describes an experimental research on fracture characteristics of self-compacting concrete (SCC). Three point bending tests conducted on 154 notched beams with different water to cement (w/c) ratios. The specimens were made from mixes with various w/c ratios from 0.7 to 0.35. For all mixes, common fracture parameters were determined using two different methods, the work-of-fracture method (WFM) and the size effect method (SEM). Test results showed that with decrease of w/c ratio from 0.7 to 0.35 in SCC: (a) the fracture toughness increases linearly: (b) the brittleness number is approximately doubled: (c) the effective size of the process zone cf in SEM and the characteristic... 

    Fracture toughness of a hybrid-rubber-modified epoxy. I. Synergistic toughening

    , Article Journal of Applied Polymer Science ; Volume 125, Issue 3 , January , 2012 , Pages 2467-2475 ; 00218995 (ISSN) Abadyan, M ; Bagheri, R ; Kouchakzadeh, M. A ; Sharif University of Technology
    Wiley  2012
    Abstract
    The fracture behavior of a hybrid-rubber-modified epoxy system was investigated. The modified epoxy included amine-terminated butadiene acrylonitrile (ATBN) rubber and recycled tire particles as fine and coarse modifiers, respectively. The results of the fracture toughness (K IC) measurement of the blends revealed synergistic toughening in the hybrid system when 7.5-phr small particles (ATBN) and 2.5-phr large particles (recycled tire) were incorporated. Transmission optical micrographs showed different toughening mechanisms for the blends; fine ATBN particles increased the toughness by increasing the size of the damage zone and respective plastic deformation in the vicinity of the crack... 

    Architecturally modified Al-DRA composites: The effect of size and shape of the DRA rods on fracture behavior

    , Article Journal of Materials Science ; Volume 45, Issue 11 , June , 2010 , Pages 2852-2861 ; 00222461 (ISSN) Jamali, M ; Farokhzadeh, K ; Bagheri, R ; Seyed Reihani, S. M ; Sharif University of Technology
    2010
    Abstract
    Architectural modification of aluminum matrix composites is considered as an efficient method to improve fracture toughness. Al-DRA (Al-Al/SiC/20 p) composites were fabricated via "powder extrusion-casting- ingot extrusion" route with structures similar to that of reinforced concrete, so that DRA rods were surrounded by unreinforced aluminum. The effects of variation in shape, size, and number of DRA rods on fracture behavior of Al-DRA composites were investigated. Composites containing DRA rods with hexagonal cross-section exhibited higher resistance to crack initiation and growth, in comparison to those containing circular rods. In the case of hexagonal rods, increasing the number of rods... 

    Improvement in the mechanical properties of Al/SiC nanocomposites fabricated by severe plastic deformation and friction stir processing

    , Article International Journal of Minerals, Metallurgy and Materials ; Volume 24, Issue 3 , 2017 , Pages 297-308 ; 16744799 (ISSN) Sarkari Khorrami, M ; Kazeminezhad, M ; Miyashita, Y ; Kokabi, A. H ; Sharif University of Technology
    Abstract
    Severely deformed aluminum sheets were processed by friction stir processing (FSP) with SiC nanoparticles under different conditions to improve the mechanical properties of both the stir zone and the heat affected zone (HAZ). In the case of using a simple probe and the same rotational direction (RD) of the FSP tool between passes, at least three FSP passes were required to obtain the appropriate distribution of nanoparticles. However, after three FSP passes, fracture occurred outward from the stir zone during transverse tensile tests; thus, the strength of the specimen was significantly lower than that of the severely deformed base material because of the softening phenomenon in the HAZ. To... 

    Effect of thermal treatment on fracture behavior of solder joints at various strain rates: Comparison of cyclic and constant temperature

    , Article Engineering Failure Analysis ; Volume 128 , 2021 ; 13506307 (ISSN) Honarvar, S ; Nourani, A ; Karimi, M ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Fracture tests on Sn93Pb37 solder joints in a double cantilever beam (DCB) configuration were performed at two different strain rates of 10−5 and 0.03 s−1 under mode I loading conditions. In each case, the critical strain energy release rate for crack initiation, Jci, was obtained. Effects of storing specimens at a constant temperature of 75 °C and cyclic temperature varying between 32 and 75 °C were examined at these strain rates. In the strain rate of 0.03 s−1, storing samples in a constant or cyclic temperature caused the fracture energy to decrease significantly with respect to the specimens maintained in ambient temperature. The significant reduction in fracture energy by placing the... 

    Effect of environmental conditions on fracture behavior of solder joints

    , Article Theoretical and Applied Fracture Mechanics ; Volume 112 , 2021 ; 01678442 (ISSN) Honarvar, S ; Nourani, A ; Karimi, M ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    Double cantilever beam (DCB) specimens were prepared according to standard surface mount technology (SMT). The samples were stored inside an environmental chamber at two different relative humidity values (i.e. 40 or 100%) for either 2 or 4 h. Then they were aged at 25 °C, 75 °C or 125℃ for the same time. Finally, after being cooled to room temperature, fracture tests were performed under mode-I loading conditions at a strain rate of 0.03 s−1 at room temperature. Storage time did not have a significant effect on the fracture behavior. The fracture load and energy of the solder joints decreased significantly when the temperature was increased from 25 to 75℃. By further increase in the... 

    Determination of the fracture parameters of concrete with improved wedge-splitting testing

    , Article Engineering Fracture Mechanics ; Volume 276 , 2022 ; 00137944 (ISSN) Sun, L ; Du, C ; Ghaemian, M ; Zhao, W ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Considering the quasi-brittle mechanical properties of concrete, wedge-splitting tests are employed and improved in this paper to study the fracture behaviour of concrete. A novel wedge-splitting device is designed by fixing ten springs on the force transmission component. The adaptive spring force can be imposed on top of a concrete specimen to retard the brittle fracture process. With the proposed wedge-splitting test design for notched cuboid specimens, the complete load–strain/CMOD curves of concrete can be generated directly. The fracture toughness and the fracture energy can be calculated easily without numerical fitting using the double-K fracture model. The descending branch of the... 

    Atomistic simulations of mechanical properties and fracture of graphene: A review

    , Article Computational Materials Science ; Volume 210 , 2022 ; 09270256 (ISSN) Torkaman Asadi, M. A ; Kouchakzadeh, M. A ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    Material properties and fracture characteristics are among the most prominent parameters that should be considered for a wide range of graphene applications. This article reviews recent advances in theoretical studies on the mechanical properties and fracture behaviors of graphene, focusing on the effect of various simulation models. Most studies investigated single-layer graphene sheets (SLGSs) under uniaxial tensile tests using different common interatomic potentials, particularly AIREBO. Although researchers have examined a similar problem, specifically for pristine graphene, the differences in the reported values are considerable. These discrepancies are most evident in fracture... 

    Investigating the effect of rolling strain on fracture behavior of roll bonded Al6061 laminates under quasi-static and dynamic loading

    , Article Materials Science and Engineering A ; Volume 558 , 2012 , Pages 82-89 ; 09215093 (ISSN) Hosseini Monazzah, A ; Bagheri, R ; Seyed Reihani, S. M ; Sharif University of Technology
    2012
    Abstract
    Damage tolerance improvement has been reported by laminating aluminum alloys and composites by researchers. Three-layer laminates comprising Al6061 outer layers and Al1050 interlayer have been roll bonded in this research. While most of the works done have focused on fracture properties of roll bonded Al laminates in crack arrester geometry, this study explores their behavior in crack divider configuration. Rolling strain is varied to control the interfacial bonding in laminates. The fracture behavior of laminates and the constituent material was examined via three-point bending and impact tests. This study presents significant improvement in damage tolerance of laminates compared to their... 

    Strain rate sensitivity and fracture behavior of severely deformed Al-Mn alloy sheets

    , Article Materials Science and Engineering A ; Volume 532 , January , 2012 , Pages 26-30 ; 09215093 (ISSN) Khakbaz, F ; Kazeminezhad, M ; Sharif University of Technology
    2012
    Abstract
    Wrought sheets of an Al-Mn alloy are subjected to severe plastic deformation using constrained groove pressing (CGP) method. After applying CGP passes on the sheets, tensile tests at different strain rates are carried out and the strain rate sensitivity values are calculated. Results show that strain rate sensitivity is increased from 0.0081 in annealed sheets to 0.019 after three passes of constrained groove pressing. This arises from intrinsic decrease in grain size due to severe straining. Experimental results reveal that after three CGP passes, the rate of increasing in strain rate sensitivity is decreased. Fracture surfaces of the tensile samples are observed using scanning electron... 

    Fracture behavior dependence on load-bearing capacity of filler in nano- and microcomposites of polypropylene containing calcium carbonate

    , Article Materials and Design ; Volume 31, Issue 2 , 2010 , Pages 802-807 ; 02641275 (ISSN) Afshar, A ; Massoumi, I ; Khosh, R. L ; Bagheri, R ; Sharif University of Technology
    2010
    Abstract
    The fracture toughness and deformation mechanism of PP/CaCO3 (15 wt.%) composites were studied and related to load-bearing capacity of the particles. To alter the load-bearing capacity of the particles, different particle sizes (0.07-7 μm) with or without stearic acid coating were incorporated. The fracture toughness of the composites was determined using J-Integral method and the deformation mechanism was studied by transmission optical microscopy of the crack tip damage zone. It was observed that the load-bearing capacity of the particles decreased by reduction of particle size and application of coating. A linear relationship between normalized fracture toughness and inverse of... 

    Fatigue fracture of friction-stir processed Al-Al3Ti-MgO hybrid nanocomposites

    , Article International Journal of Fatigue ; Volume 87 , 2016 , Pages 266-278 ; 01421123 (ISSN) Sahandi Zangabad, P ; Khodabakhshi, F ; Simchi, A ; Kokabi, A. H ; Sharif University of Technology
    Elsevier Ltd 
    Abstract
    This paper presents experimental results on the fatigue properties of Al-matrix nanocomposites prepared by the friction stir processing (FSP) technique. An Al-Mg alloy (AA5052) with different amounts (∼2 and 3.5 vol%) of pre-placed TiO2 nanoparticles were FSPed up to 6 passes to attain homogenous dispersion of nano-metric inclusions. Microstructural studies by electron microscopic and electron back scattering diffraction (EBSD) techniques showed that nano-metric Al3Ti (50 nm), TiO2 (30 nm), and MgO (50 nm) particles were distributed throughout a fine-grained Al matrix (<2 μm). Consequently, a significant improvement in the tensile strength and hardness was attained. Uniaxial... 

    Fracture properties of steel fiber reinforced high strength concrete using work of fracture and size effect methods

    , Article Construction and Building Materials ; Volume 142 , 2017 , Pages 482-489 ; 09500618 (ISSN) Kazemi, M. T ; Golsorkhtabar, H ; Beygi, M. H. A ; Gholamitabar, M ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    This paper deals with investigation of fracture behavior of steel fiber reinforced high strength concrete (SFRHSC) and compare it to plain high strength concrete (HSC). Based on an experimental program, a series of three point bending tests were carried out on 54 notched beams, as recommended by RILEM. The fracture parameters were measured by two methods: work of fracture method (WFM) and size effect method (SEM). Then the fracture parameters obtained from these two methods were compared. The results showed that with increase of steel fibers, fracture energy of GF in WFM and Gf in SEM increase but this increase in work of fracture method is more significant. The effective size of the process... 

    Anomalous fracture behavior in an epoxy-based hybrid composite

    , Article Materials Science and Engineering A ; Volume 515, Issue 1-2 , 2009 , Pages 49-58 ; 09215093 (ISSN) Marouf, B. T ; Pearson, R. A ; Bagheri, R ; Sharif University of Technology
    2009
    Abstract
    In this investigation, core-shell rubber particles and organically modified clay were added to an epoxy resin and the changes in mechanical behavior were studied. As expected, the yield strength of the organoclay-filled epoxies increased modestly with increasing clay content and the yield strength of the rubber-modified compounds decreased with rubber content. Interestingly, the compressive yield strength of epoxy resins containing both rubber particles and organoclay (a.k.a. hybrid nanocomposites) was found to be independent on organoclay content (up to 5 phr). The fracture toughness of organoclay-filled epoxies increased modestly with clay content and, as expected, the increases in...