Loading...
Search for: fracture-behaviour
0.005 seconds

    Determination of the fracture parameters of concrete with improved wedge-splitting testing

    , Article Engineering Fracture Mechanics ; Volume 276 , 2022 ; 00137944 (ISSN) Sun, L ; Du, C ; Ghaemian, M ; Zhao, W ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Considering the quasi-brittle mechanical properties of concrete, wedge-splitting tests are employed and improved in this paper to study the fracture behaviour of concrete. A novel wedge-splitting device is designed by fixing ten springs on the force transmission component. The adaptive spring force can be imposed on top of a concrete specimen to retard the brittle fracture process. With the proposed wedge-splitting test design for notched cuboid specimens, the complete load–strain/CMOD curves of concrete can be generated directly. The fracture toughness and the fracture energy can be calculated easily without numerical fitting using the double-K fracture model. The descending branch of the... 

    Predicting fracture of solder joints with different constraint factors

    , Article Fatigue and Fracture of Engineering Materials and Structures ; 2018 ; 8756758X (ISSN) Nourani, A ; Mirmehdi, S ; Farrahi, G. H ; Soroush, F ; Sharif University of Technology
    Blackwell Publishing Ltd  2018
    Abstract
    Double cantilever beam (DCB) specimens of 2.5-mm-long SAC305 solder joints were prepared with thickness of copper adherends varying from 8 to 21 mm each. The specimens were tested under mode I loading conditions (ie, pure opening mode with no shear component of loading) with a strain rate of 0.03 second−1. The measured fracture load was used to calculate the critical strain energy release rate for crack initiation, Jci, in each case. Fracture behaviour showed a significant dependence on the adherend thickness; the Jci and plastic deformation of the solder at crack initiation decreased significantly with increase in adherend thickness. This behaviour was attributed to changes in stress... 

    Predicting fracture of solder joints with different constraint factors

    , Article Fatigue and Fracture of Engineering Materials and Structures ; Volume 42, Issue 2 , 2019 , Pages 425-438 ; 8756758X (ISSN) Nourani, A ; Mirmehdi, S ; Farrahi, G ; Soroush, F ; Sharif University of Technology
    Blackwell Publishing Ltd  2019
    Abstract
    Double cantilever beam (DCB) specimens of 2.5-mm-long SAC305 solder joints were prepared with thickness of copper adherends varying from 8 to 21 mm each. The specimens were tested under mode I loading conditions (ie, pure opening mode with no shear component of loading) with a strain rate of 0.03 second−1. The measured fracture load was used to calculate the critical strain energy release rate for crack initiation, Jci, in each case. Fracture behaviour showed a significant dependence on the adherend thickness; the Jci and plastic deformation of the solder at crack initiation decreased significantly with increase in adherend thickness. This behaviour was attributed to changes in stress...